The Analysis of Large Dam Impacts on Sediment Grain Size Distribution in a Tropical River System

Mohammad Haroon Hairan, Nor Rohaizah Jamil, Mohammad Noor Amal Azmai, Ley Juen Looi, Ahmad Zaharin Aris, Mohd Hafiz Rosli

Abstract


Sedimentation is a natural phenomenon of rivers that is enhanced by modification of the river basin. The presence of dams delays the exchange of sediments, nutrients, and organisms between the terrestrial and aquatic environments. This article assesses the impact of the Selangor dam on the sediment grain size distribution and its association with river velocity and discharge. The fieldwork for sampling is conducted in the normal and rainy seasons. The samples were analyzed through a sieve analysis procedure to determine the particle size of the sediments. After the sieve analysis technique, GRADISTAT analysis was performed on the output. The GRADISTAT analysis classifies the sediments between sandy gravel and sand, and the median grain size (D50) ranges from 4.00 to 0.18 mm. The spatial distribution of the D50 shows that the bed-load sediments of the upper Selangor River are becoming fine-grained downstream. The skewness of the sediments differs from 0.86 to 8.44, which indicates that the sediments are poorly to moderately well sorted. The Spearman's correlation of the D50 and river velocity and discharge determine no association of the D50 with river velocity and discharge. The stations near Selangor Dam have high slopes and receive "sediment hungry" water that washes small-sized sediments; therefore, the upper stations have a more significant amount of gravel and large sand.

 

Doi: 10.28991/CEJ-SP2023-09-02

Full Text: PDF


Keywords


Sedimentation; Particle Size Distribution; Selangor River; River Morphology; River Discharge.

References


Nguyen, T. H. T., Everaert, G., Boets, P., Forio, M. A. E., Bennetsen, E., Volk, M., Hoang, T. H. T., & Goethals, P. L. M. (2018). Modelling tools to analyze and assess the ecological impact of hydropower dams. Water (Switzerland), 10(3), 1–21. doi:10.3390/w10030259.

Bednarek, A. T. (2001). Undamming rivers: A review of the ecological impacts of dam removal. Environmental Management, 27(6), 803–814. doi:10.1007/s002670010189.

Brandt, S. A. (2000). Classification of geomorphological effects downstream of dams. Catena, 40(4), 375–401. doi:10.1016/S0341-8162(00)00093-X.

Rapin, A., Rabiet, M., Mourier, B., Grybos, M., & Deluchat, V. (2020). Sedimentary phosphorus accumulation and distribution in the continuum of three cascade dams (Creuse River, France). Environmental Science and Pollution Research, 27(6), 6526–6539. doi:10.1007/s11356-019-07184-6.

Wohl, E. (2015). Legacy effects on sediments in river corridors. Earth-Science Reviews, 147(5), 30–53. doi:10.1016/j.earscirev.2015.05.001.

McManamay, R. A. (2014). Quantifying and generalizing hydrologic responses to dam regulation using a statistical modeling approach. Journal of Hydrology, 519(PA), 1278–1296. doi:10.1016/j.jhydrol.2014.08.053.

Timpe, K., & Kaplan, D. (2017). The changing hydrology of a dammed Amazon. Science Advances, 3(11), 1–14. doi:10.1126/sciadv.1700611.

Nicu, I. C. (2018). Is overgrazing really influencing soil erosion? Water (Switzerland), 10(8), 1–16. doi:10.3390/w10081077.

Liu, Y. F., Dunkerley, D., López-Vicente, M., Shi, Z. H., & Wu, G. L. (2020). Trade-off between surface runoff and soil erosion during the implementation of ecological restoration programs in semiarid regions: A meta-analysis. Science of the Total Environment, 712(26). doi:10.1016/j.scitotenv.2019.136477.

Alavinia, M., Saleh, F. N., & Asadi, H. (2019). Effects of rainfall patterns on runoff and rainfall-induced erosion. International Journal of Sediment Research, 34(3), 270–278. doi:10.1016/j.ijsrc.2018.11.001.

Prasuhn, V. (2012). On-farm effects of tillage and crops on soil erosion measured over 10 years in Switzerland. Soil and Tillage Research, 120, 137–146. doi:10.1016/j.still.2012.01.002.

Wood, P. J., & Armitage, P. D. (1997). Biological effects of fine sediment in the lotic environment. Environmental Management, 21(2), 203–217. doi:10.1007/s002679900019.

Chen, X., Yan, Y., Fu, R., Dou, X., & Zhang, E. (2008). Sediment transport from the Yangtze River, China, into the sea over the Post-Three Gorge Dam Period: A discussion. Quaternary International, 186(1), 55–64. doi:10.1016/j.quaint.2007.10.003.

Yonggui, Y., Shi, X., Wang, H., Yue, C., Chen, S., Liu, Y., Hu, L., & Qiao, S. (2013). Effects of dams on water and sediment delivery to the sea by the Huanghe (Yellow River): The special role of Water-Sediment Modulation. Anthropocene, 3(March), 72–82. doi:10.1016/j.ancene.2014.03.001.

Yang, H. F., Yang, S. L., Xu, K. H., Milliman, J. D., Wang, H., Yang, Z., Chen, Z., & Zhang, C. Y. (2018). Human impacts on sediment in the Yangtze River: A review and new perspectives. Global and Planetary Change, 162, 8–17. doi:10.1016/j.gloplacha.2018.01.001.

Tian, S., Xu, M., Jiang, E., Wang, G., Hu, H., & Liu, X. (2019). Temporal variations of runoff and sediment load in the upper Yellow River, China. Journal of Hydrology, 568, 46–56. doi:10.1016/j.jhydrol.2018.10.033.

Pitlick, J., Mueller, E. R., Segura, C., Cress, R., & Torizzo, M. (2008). Relation between flow, surface-layer armoring and sediment transport in gravel-bed rivers. Earth Surface Processes and Landforms, 33(8), 1192–1209. doi:10.1002/esp.1607.

Shi, P., Arter, C., Liu, X., Keller, M., & Schulin, R. (2017). Soil aggregate stability and size-selective sediment transport with surface runoff as affected by organic residue amendment. Science of the Total Environment, 607–608, 95–102. doi:10.1016/j.scitotenv.2017.07.008.

Carriquiry, J. D., Sánchez, A., & Camacho-Ibar, V. F. (2001). Sedimentation in the northern Gulf of California after cessation of the Colorado River discharge. Sedimentary Geology, 144(1–2), 37–62. doi:10.1016/S0037-0738(01)00134-8.

Bainbridge, Z., Lewis, S., Stevens, T., Petus, C., Lazarus, E., Gorman, J., & Smithers, S. (2021). Measuring sediment grain size across the catchment to reef continuum: Improved methods and environmental insights. Marine Pollution Bulletin, 168. doi:10.1016/j.marpolbul.2021.112339.

Blott, S. J., & Pye, K. (2001). Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26(11), 1237–1248. doi:10.1002/esp.261.

Liu, D., Bertrand, S., & Weltje, G. J. (2019). An Empirical Method to Predict Sediment Grain Size from Inorganic Geochemical Measurements. Geochemistry, Geophysics, Geosystems, 20(7), 3690–3704. doi:10.1029/2018GC008154.

Rubin, D. M. (2004). A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1), 160–165. doi:10.1306/052203740160.

Mohtar, W. H. M. W., Bassa, S. A., & Porhemmat, M. (2017). Grain size analysis of surface fluvial sediments in rivers in Kelantan, Malaysia. Sains Malaysiana, 46(5), 685–693. doi:10.17576/jsm-2017-4605-02.

Dade, W. B., & Friend, P. F. (1998). Grain-size, sediment-transport regime, and channel slope in alluvial rivers. Journal of Geology, 106(6), 661–675. doi:10.1086/516052.

Di Stefano, C., Ferro, V., & Mirabile, S. (2010). Comparison between grain-size analyses using laser diffraction and sedimentation methods. Biosystems Engineering, 106(2), 205–215. doi:10.1016/j.biosystemseng.2010.03.013.

Cheetham, M. D., Keene, A. F., Bush, R. T., Sullivan, L. A., & Erskine, W. D. (2008). A comparison of grain-size analysis methods for sand-dominated fluvial sediments. Sedimentology, 55(6), 1905–1913. doi:10.1111/j.1365-3091.2008.00972.x.

Beuselinck, L., Govers, G., Poesen, J., Degraer, G., & Froyen, L. (1998). Grain-size analysis by laser diffractometry: Comparison with the sieve-pipette method. Catena, 32(3–4), 193–208. doi:10.1016/S0341-8162(98)00051-4.

Switzer, A. D., & Pile, J. (2015). Grain size analysis. Handbook of Sea-Level Research, 331–346, John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118452547.ch22. John Wiley & Sons

Camara, M., Jamil, N. R., & Abdullah, A. F. Bin. (2019). Impact of land uses on water quality in Malaysia: a review. Ecological Processes, 8(1), 10. doi:10.1186/s13717-019-0164-x.

Sakai, N., Alsaad, Z., Thuong, N. T., Shiota, K., Yoneda, M., & Ali Mohd, M. (2017). Source profiling of arsenic and heavy metals in the Selangor River basin and their maternal and cord blood levels in Selangor State, Malaysia. Chemosphere, 184, 857–865. doi:10.1016/j.chemosphere.2017.06.070.

Othman, F., Chowdhury, M. S. U., Sakai, N., Shaaban, M. G., & Shimizu, Y. (2014). Identification of pollution loading in a tropical river basin: a case study of Selangor River, Malaysia. Environmental Science and Biological Engineering, 1(October), 95–102. doi:10.2495/esbe140121.

Santhi, V. A., & Mustafa, A. M. (2013). Assessment of organochlorine pesticides and plasticisers in the Selangor River basin and possible pollution sources. Environmental Monitoring and Assessment, 185(2), 1541–1554. doi:10.1007/s10661-012-2649-2.

Fulazzaky, M. A., Seong, T. W., & Masirin, M. I. M. (2010). Assessment of water quality status for the Selangor river in Malaysia. Water, Air, and Soil Pollution, 205(1–4), 63–77. doi:10.1007/s11270-009-0056-2.

Kusin, F. M., Muhammad, S. N., Zahar, M. S. M., & Madzin, Z. (2016). Integrated River Basin Management: incorporating the use of abandoned mining pool and implication on water quality status. Desalination and Water Treatment, 57(60), 29126–29136. doi:10.1080/19443994.2016.1168132.

Chowdhury, M. S. U., Othman, F., Jaafar, W. Z. W., Mood, N. C., & Adham, M. I. (2018). Assessment of pollution and improvement measure of water quality parameters using scenarios modeling for Sungai Selangor Basin. Sains Malaysiana, 47(3), 457–469. doi:10.17576/jsm-2018-4703-05.

Camara, M., Jamil, N. R., Abdullah, A. F. Bin, Hashim, R. binti, & Aliyu, A. G. (2020). Economic and efficiency based optimisation of water quality monitoring network for land use impact assessment. Science of the Total Environment, 737(5). doi:10.1016/j.scitotenv.2020.139800.

Leong, K. H., Benjamin Tan, L. L., & Mustafa, A. M. (2007). Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003. Chemosphere, 66(6), 1153–1159. doi:10.1016/j.chemosphere.2006.06.009.

Hairan, M. H., Jamil, N. R., Azmai, M. N. A., Looi, L. J., & Camara, M. (2021). Environmental flow assessment of a tropical river system using hydrological index methods. Water (Switzerland), 13(18), 1–14,. doi:10.3390/w13182477.

Seyam, M., & Othman, F. (2015). Long-term variation analysis of a tropical river’s annual streamflow regime over a 50-year period. Theoretical and Applied Climatology, 121(1–2), 71–85. doi:10.1007/s00704-014-1225-9.

Russell, K. L., Vietz, G. J., & Fletcher, T. D. (2018). Urban catchment runoff increases bedload sediment yield and particle size in stream channels. Anthropocene, 23(September), 53–66. doi:10.1016/j.ancene.2018.09.001.

Addy, S., Soulsby, C., Hartley, A. J., & Tetzlaff, D. (2011). Characterisation of channel reach morphology and associated controls in deglaciated montane catchments in the Cairngorms, Scotland. Geomorphology, 132(3–4), 176–186. doi:10.1016/j.geomorph.2011.05.007.

Rice, S., & Church, M. (1998). Grain size along two gravel-bed rivers: Statistical variation, spatial pattern and sedimentary links. Earth Surface Processes and Landforms, 23(4), 345–363. doi:10.1002/(SICI)1096-9837(199804)23:4<345::AID-ESP850>3.0.CO;2-B.

Lu, X., Kummu, M., & Oeurng, C. (2014). Reappraisal of sediment dynamics in the Lower Mekong River, Cambodia. Earth Surface Processes and Landforms, 39(14), 1855–1865. doi:10.1002/esp.3573.


Full Text: PDF

DOI: 10.28991/CEJ-SP2023-09-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Mohammad Haroon Hairan, Nor Rohaizah Jamil, Mohammad Noor Amal Azmai, Ley Juen Looi, Ahmad Zaharin Aris, Mohd Hafiz Rosli

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message