Extreme Event-based Rainfall-Runoff Simulation Utilizing GIS Techniques in Irawan Watershed, Palawan, Philippines
Downloads
Doi: 10.28991/CEJ-2023-09-01-017
Full Text: PDF
Downloads
[2] Rouf, T. (2015). Flood Inundation Map of Sirajgonj District Using Mathematical Model. Master Thesis, Bangladesh University of Engineering and technology, Dhaka, Bangladesh.
[3] Valenzuela, V. P. B., Esteban, M., Takagi, H., Thao, N. D., & Onuki, M. (2020). Disaster awareness in three low risk coastal communities in Puerto Princesa City, Palawan, Philippines. International Journal of Disaster Risk Reduction, 46(September), 101508–101508. doi:10.1016/j.ijdrr.2020.101508.
[4] Jeshyl, G. (2021). Puerto Princesa gets flooded again due to flawed drainage system. Puerto Princesa City, Philippines.
[5] Paul, G., Bertule, M., Taylor, P., Bjí¸rnsen, P. K., Lloyd, G. J., Hansted, N. G., ... & Takane, M. (2018). Progress on Integrated Water Resources Management: Global Baseline for SDG 6 Indicator 6.5.1-Degree of IWRM Implementation. United nations Environmental Programme, UN-Water, Geneva, Switzerland.
[6] Niyazi, B. A., Masoud, M. H., Ahmed, M., Basahi, J. M., & Rashed, M. A. (2020). Runoff assessment and modeling in arid regions by integration of watershed and hydrologic models with GIS techniques. Journal of African Earth Sciences, 172, 103966. doi:10.1016/j.jafrearsci.2020.103966.
[7] Vojtek, M., & Vojteková, J. (2016). Flood hazard and flood risk assessment at the local spatial scale: a case study. Geomatics, Natural Hazards and Risk, 7(6), 1973–1992. doi:10.1080/19475705.2016.1166874.
[8] Elfeki, A., Masoud, M., & Niyazi, B. (2017). Integrated rainfall–runoff and flood inundation modeling for flash flood risk assessment under data scarcity in arid regions: Wadi Fatimah basin case study, Saudi Arabia. Natural Hazards, 85(1), 87–109. doi:10.1007/s11069-016-2559-7.
[9] Abdulrazzak, M., Elfeki, A., Kamis, A., Kassab, M., Alamri, N., Chaabani, A., & Noor, K. (2019). Flash flood risk assessment in urban arid environment: case study of Taibah and Islamic universities' campuses, Medina, Kingdom of Saudi Arabia. Geomatics, Natural Hazards and Risk, 10(1), 780–796. doi:10.1080/19475705.2018.1545705.
[10] Grimaldi, S., Petroselli, A., Arcangeletti, E., & Nardi, F. (2013). Flood mapping in ungauged basins using fully continuous hydrologic-hydraulic modeling. Journal of Hydrology, 487, 39–47. doi:10.1016/j.jhydrol.2013.02.023.
[11] Farooq, M., Shafique, M., & Khattak, M. S. (2019). Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM). Natural Hazards, 97(2), 477–492. doi:10.1007/s11069-019-03638-9.
[12] Seibert, J. (1999). Regionalisation of parameters for a conceptual rainfall-runoff model. Agricultural and Forest Meteorology, 98–99, 279–293. doi:10.1016/S0168-1923(99)00105-7.
[13] Nyaupane, N., Thakur, B., Kalra, A., & Ahmad, S. (2018). Evaluating future flood scenarios using CMIP5 climate projections. Water (Switzerland), 10(12), 1–18. doi:10.3390/w10121866.
[14] Pathak, P., Kalra, A., & Ahmad, S. (2017). Temperature and precipitation changes in the Midwestern United States: implications for water management. International Journal of Water Resources Development, 33(6), 1003–1019. doi:10.1080/07900627.2016.1238343.
[15] Jobe, A., Kalra, A., & Ibendahl, E. (2018). Conservation Reserve Program effects on floodplain land cover management. Journal of Environmental Management, 214, 305–314. doi:10.1016/j.jenvman.2018.03.016.
[16] Thakali, R., Kalra, A., Ahmad, S., & Qaiser, K. (2018). Management of an Urban Storm water System Using Projected Future Scenarios of Climate Models: A Watershed-Based Modeling Approach. Open Water Journal, 5(2), 1.
[17] Tamaddun, K., Kalra, A., & Ahmad, S. (2018). Potential of rooftop rainwater harvesting to meet outdoor water demand in arid regions. Journal of Arid Land, 10(1), 68–83. doi:10.1007/s40333-017-0110-7.
[18] Rauf, A.U., & Ghumman, A. R. (2018). Impact assessment of rainfall-runoff simulations on the flow duration curve of the Upper Indus river- A comparison of data-driven and hydrologic models. Water (Switzerland), 10(7), 876–876. doi:10.3390/w10070876.
[19] Youssef, A. M. A., Ibrahem, S. M. M., El Sayed, A. N., & Masoud, M. H. Z. (2020). Assessment and management of water resources in Wadi El-Deeb using geophysical, hydrological and GIS techniques-Red Sea. Journal of African Earth Sciences, 164, 103777–103777. doi:10.1016/j.jafrearsci.2020.103777.
[20] Nikolaos, S., Kleomenis, K., Elias, D., Panagiotis, S., Panagiota, L., Vagelis, P., & Christos, C. (2019). A Robust Remote Sensing–Spatial Modeling–Remote Sensing (R-M-R) Approach for Flood Hazard Assessment. Spatial Modeling in GIS and R for Earth and Environmental Sciences, 391–410. doi:10.1016/b978-0-12-815226-3.00017-x.
[21] Weng, Q. (2001). Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environmental Management, 28(6), 737–748. doi:10.1007/s002670010258.
[22] Fortin, J.-P., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J., & Villeneuve, J.-P. (2001). Distributed Watershed Model Compatible with Remote Sensing and GIS Data. I: Description of Model. Journal of Hydrologic Engineering, 6(2), 91–99. doi:10.1061/(asce)1084-0699(2001)6:2(91).
[23] Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Srinivasan, R., & Williams, J. R. (2002). Soil and Water Assessment Tool–User's Manual 2002, TWRI Report TR-192, Texas, United States.
[24] Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., & Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430. doi:10.1016/j.jhydrol.2006.09.014.
[25] Chalkias, C., Stathopoulos, N., Kalogeropoulos, K., & Karymbalis, E. (2016). Applied Hydrological Modeling with the Use of Geoinformatics: Theory and Practice. Empirical Modeling and Its Applications. doi:10.5772/62824.
[26] Amengual, A., Romero, R., Gómez, M., Martín, A., & Alonso, S. (2007). A hydrometeorological modeling study of a flash-flood event over Catalonia, Spain. Journal of Hydrometeorology, 8(3), 282–303. doi:10.1175/JHM577.1.
[27] Ranaee, E., Mahmoodian, M., & Quchani, S. R. (2009). The combination of HEC-Geo-HMS, HEC-HMS and MIKE11 software utilize in a two branches river flood routing modeling. 2nd International Conference on Environmental and Computer Science, ICECS 2009, 317–321. doi:10.1109/ICECS.2009.62.
[28] Gül, G. O., Harmancioǧlu, N., & Gül, A. (2010). A combined hydrologic and hydraulic modeling approach for testing efficiency of structural flood control measures. Natural Hazards, 54(2), 245–260. doi:10.1007/s11069-009-9464-2.
[29] Popescu, I., Jonoski, A., van Andel, S. J., Onyari, E., & Quiroga, V. G. M. (2010). Integrated modelling for flood risk mitigation in Romania: Case study of the Timis-Bega River basin. International Journal of River Basin Management, 8(3–4), 269–280. doi:10.1080/15715124.2010.512550.
[30] Mendes, J., & Maia, R. (2016). Hydrologic Modelling Calibration for Operational Flood Forecasting. Water Resources Management, 30(15), 5671–5685. doi:10.1007/s11269-016-1509-1.
[31] Al-Zahrani, M., Al-Areeq, A., & Sharif, H. O. (2017). Estimating urban flooding potential near the outlet of an arid catchment in Saudi Arabia. Geomatics, Natural Hazards and Risk, 8(2), 672–688. doi:10.1080/19475705.2016.1255668.
[32] Azam, M., Kim, H. S., & Maeng, S. J. (2017). Development of flood alert application in Mushim stream watershed Korea. International Journal of Disaster Risk Reduction, 21, 11–26. doi:10.1016/j.ijdrr.2016.11.008.
[33] Elmoustafa, A. M., Saad, N. Y., & Fattouh, E. M. (2020). Defining the degree of flood hazard using a hydrodynamic approach, a case study: Wind turbines field at west of Suez Gulf. Ain Shams Engineering Journal, 11(3), 741–749. doi:10.1016/j.asej.2019.12.005.
[34] Guduru, J. U., Jilo, N. B., Rabba, Z. A., & Namara, W. G. (2023). Rainfall-runoff modeling using HEC-HMS model for Meki River watershed, rift valley basin, Ethiopia. Journal of African Earth Sciences, 197. doi:10.1016/j.jafrearsci.2022.104743.
[35] Juma, B., Olang, L. O., Hassan, M. A., Mulligan, J., & Shiundu, P. M. (2022). Simulation of flood peak discharges and volumes for flood risk management in the ungauged urban informal settlement of Kibera, Kenya. Physics and Chemistry of the Earth, 128. doi:10.1016/j.pce.2022.103236.
[36] Kalinina, A., Spada, M., Vetsch, D. F., Marelli, S., Whealton, C., Burgherr, P., & Sudret, B. (2020). Metamodeling for uncertainty quantification of a flood wave model for concrete dam breaks. Energies, 13(14). doi:10.3390/en13143685.
[37] Kumari, N., Srivastava, A., Sahoo, B., Raghuwanshi, N. S., & Bretreger, D. (2021). Identification of Suitable Hydrological Models for Streamflow Assessment in the Kangsabati River Basin, India, by Using Different Model Selection Scores. Natural Resources Research, 30(6), 4187–4205. doi:10.1007/s11053-021-09919-0.
[38] Ben Khélifa, W., & Mosbahi, M. (2022). Modeling of rainfall-runoff process using HEC-HMS model for an urban ungauged watershed in Tunisia. Modeling Earth Systems and Environment, 8(2), 1749–1758. doi:10.1007/s40808-021-01177-6.
[39] Puerto Princesa City Government (2022). Princesa City, Comprehensive Land Use Plan City of Puerto Princesa. Puerto Princesa City Government, Puerto Princesa, Philippines.
[40] Quijano, I. P., Valenzuela, J., Carredo, R. S., Patiño, C., & Sinogaya, J. (2015). Vulnerability assessment of government buildings in sagay city through flood modeling and mobile GIS. 36th Asian Conference on Remote Sensing: Fostering Resilient Growth in Asia (ACRS 2015), 19-23 October, 2015, Quezon City, Philippines.
[41] Schab, G. D., Fangmeier, D. D., Elliot, W. J. & Frevert, R. K. (1976). Soil and water conservation engineering. Eos, Transactions American Geophysical Union, 57(10), 708-711.
[42] Scharffenberg, W. (2016). Hydrologic Modeling System HEC-HMS User's Manual. U.S. Army Corps of Engineers - Hydrologic Engineering Center, davis, United States.
[43] Tassew, B. G., Belete, M. A., & Miegel, K. (2019). Application of HEC-HMS model for flow simulation in the Lake Tana Basin: The case of Gilgel Abay Catchment, upper Blue Nile Basin, Ethiopia. Hydrology, 6(1). doi:10.3390/hydrology6010019.
[44] Lal, M., Mishra, S. K., Pandey, A., Pandey, R. P., Meena, P. K., Chaudhary, A., Jha, R. K., Shreevastava, A. K., & Kumar, Y. (2017). Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots. Hydrogeology Journal, 25(1), 151–167. doi:10.1007/s10040-016-1460-5.
[45] Ranjan, S., & Singh, V. (2022). HEC-HMS based rainfall-runoff model for Punpun river basin. Water Practice and Technology, 17(5), 986–1001. doi:10.2166/wpt.2022.033.
[46] Jourgholami, M., Karami, S., Tavankar, F., Lo Monaco, A., & Picchio, R. (2021). Effects of slope gradient on runoff and sediment yield on machine-induced compacted soil in temperate forests. Forests, 12(1), 1–19. doi:10.3390/f12010049.
[47] Gunathilake, G., Panditharathne, P., Gunathilake, A. S., & Warakagoda, N. D. (2019). Application of HEC-HMS Model on Event-Based Simulations in the Seethawaka Ganga River, Sri Lanka. Scholar Journal of Applied Science and Research, 2(9), 32–40. www.innovationinfo.org
[48] Suprayogi, S., Rifai, & Latifah, R. (2021). HEC-HMS Model for Urban Flood Analysis in Belik River, Yogyakarta, Indonesia. ASEAN Journal on Science and Technology for Development, 38(1), 15–20. doi:10.29037/ajstd.643.
[49] Hamdan, A. N. A., Almuktar, S., & Scholz, M. (2021). Rainfall-runoff modeling using the HEC-HMS model for the Al-Adhaim river catchment, northern Iraq. Hydrology, 8(2). doi:10.3390/hydrology8020058.
[50] Thu, K. C. M., Zin, W. W., & Khine, E. E. (2019). Simulation of rainfall-runoff process using HEC-HMS model for Chindwin River Basin. Proceedings of National Conference of Science and Engineering, 27-28 June, 2019, Yangon, Myanmar.
[51] D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885–900. doi:10.13031/2013.23153.
[52] Yapo, P. O., Gupta, H. V., & Sorooshian, S. (1996). Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology, 181(1–4), 23–48. doi:10.1016/0022-1694(95)02918-4.
[53] Gan, T. Y., & Biftu, G. F. (1996). Automatic calibration of conceptual rainfall-runoff models: Optimization algorithms, catchment conditions, and model structure. Water Resources Research, 32(12), 3513–3524. doi:10.1029/95WR02195.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.