Adsorption Behavior of Heavy Metal Ions by Hybrid Inulin-TEOS for Water Treatment

Wan Norfazilah Wan Ismail, Mohamad Irfan Arif Irwan Syah, Nur Hanisah Abd Muhet, Nurul Hidayah Abu Bakar, Hartina Mohd Yusop, Nurlin Abu Samah

Abstract


The present work reports the adsorption behavior involved in the adsorption of heavy metal ions using a hybrid inulin-tetraethoxysilane (TEOS) adsorbent produced through the sol-gel process. An aqueous multi-element solution was used in order to examine the inulin-TEOS adsorbent efficiency in removing Cd2+, Co2+, and Ni2+ ions. The effects of the contact duration, adsorbent dosage, initial concentration, and solution pH on the adsorption of the targeted metal ions in batch systems were evaluated. The optimal conditions for the removal of all targeted heavy metals were as follows: 30 mg of an adsorbent dosage at pH 4 and 5 minutes of contact time with an initial concentration of 0.5 mg/L. A one-way analysis of variance (one-way ANOVA) with a replication test showed that all parameters had significant differences at a p-value of 0.05. At the optimum condition, 92.59%, 90.27%, and 86.472% of Cd2+, Ni2+, and Co2+ were removed, respectively. Findings from kinetic studies suggest that the pseudo-second order model can successfully describe the overall adsorption process. Additionally, the adsorption process can be adequately explained using an intra-particle diffusion model with diffusion rate constants following the sequence of Kint,1 > Kint,2 for Co2+ and Ni2+ and Kint,1 > Kint,2 > Kint,3 for Cd2+ in each step. The results suggest that Ni2+ fits with the Langmuir isotherm, while Cd2+ and Co2+ better fit the Freundlich one. Finally, the adsorbent can be reused and is able to retain a good percentage of removal, with percentage difference decreases of 1.99%, 3.29%, and 4.12% for Cd2+, Ni2+, and Co2+, respectively, after the fifth cycle. The hybrid inulin-TEOS bio-sorbent has good adsorption capacity and durability, which could offer a low-cost practical cleaner production process for removing targeted analytes from wastewater.

 

Doi: 10.28991/CEJ-2022-08-09-03

Full Text: PDF


Keywords


Adsorption; Heavy Metal; Kinetics; Low-Cost Adsorbent; Reusability; Sol-Gel Process.

References


Rezapour, S., Siavash Moghaddam, S., Nouri, A., & Khosravi Aqdam, K. (2022). Urbanization influences the distribution, enrichment, and ecological health risk of heavy metals in croplands. Scientific Reports, 12(1), 3868. doi:10.1038/s41598-022-07789-x.

Shi, X. M., Liu, S., Song, L., Wu, C. S., Yang, B., Lu, H. Z., Wang, X., & Zakari, S. (2022). Contamination and source-specific risk analysis of soil heavy metals in a typical coal industrial city, central China. Science of the Total Environment, 836, 155694. doi:10.1016/j.scitotenv.2022.155694.

Zhao, H., Wu, Y., Lan, X., Yang, Y., Wu, X., & Du, L. (2022). Comprehensive assessment of harmful heavy metals in contaminated soil in order to score pollution level. Scientific Reports, 12(1), 3552. doi:10.1038/s41598-022-07602-9.

Mansoor, S., Kour, N., Manhas, S., Zahid, S., Wani, O. A., Sharma, V., Wijaya, L., Alyemeni, M. N., Alsahli, A. A., El-Serehy, H. A., Paray, B. A., & Ahmad, P. (2021). Biochar as a tool for effective management of drought and heavy metal toxicity. Chemosphere, 271, 129458. doi:10.1016/j.chemosphere.2020.129458.

Khoso, W. A., Haleem, N., Baig, M. A., & Jamal, Y. (2021). Synthesis, characterization and heavy metal removal efficiency of nickel ferrite nanoparticles (NFN’s). Scientific Reports, 11(1), 3790. doi:10.1038/s41598-021-83363-1.

Betiha, M. A., Moustafa, Y. M., El-Shahat, M. F., & Rafik, E. (2020). Polyvinylpyrrolidone-Aminopropyl-SBA-15 Schiff Base hybrid for efficient removal of divalent heavy metal cations from wastewater. Journal of Hazardous Materials, 397, 122675. doi:10.1016/j.jhazmat.2020.122675.

Abuhatab, S., El-Qanni, A., Al-Qalaq, H., Hmoudah, M., & Al-Zerei, W. (2020). Effective adsorptive removal of Zn2+, Cu2+, and Cr3+ heavy metals from aqueous solutions using silica-based embedded with NiO and MgO nanoparticles. Journal of Environmental Management, 268, 110713. doi:10.1016/j.jenvman.2020.110713.

Kumar, R., Barakat, M. A., Daza, Y. A., Woodcock, H. L., & Kuhn, J. N. (2013). EDTA functionalized silica for removal of Cu(II), Zn(II) and Ni(II) from aqueous solution. Journal of Colloid and Interface Science, 408(1), 200–205. doi:10.1016/j.jcis.2013.07.019.

Manzoor, K., Ahmad, M., Ahmad, S., & Ikram, S. (2019). Removal of Pb(ii) and Cd(ii) from wastewater using arginine cross-linked chitosan-carboxymethyl cellulose beads as green adsorbent. RSC Advances, 9(14), 7890–7902. doi:10.1039/C9RA00356H.

Vinayagam, V., Murugan, S., Kumaresan, R., Narayanan, M., Sillanpää, M., Vo, D. V. N., & Kushwaha, O. S. (2022). Protein nanofibrils as versatile and sustainable adsorbents for an effective removal of heavy metals from wastewater: A review. Chemosphere, 301, 134635. doi:10.1016/j.chemosphere.2022.134635.

Uko, C. A., Tijani, J. O., Abdulkareem, S. A., Mustapha, S., Egbosiuba, T. C., & Muzenda, E. (2022). Adsorptive properties of MgO/WO3 nanoadsorbent for selected heavy metals removal from indigenous dyeing wastewater. Process Safety and Environmental Protection, 162, 775–794. doi:10.1016/j.psep.2022.04.057.

Akinterinwa, A., Reuben, U., Atiku, J. U., & Adamu, M. (2022). Focus on the removal of lead and cadmium ions from aqueous solutions using starch derivatives: A review. Carbohydrate Polymers, 290, 119463. doi:10.1016/j.carbpol.2022.119463.

Li, W., Qamar, S. A., Qamar, M., Basharat, A., Bilal, M., & Iqbal, H. M. N. (2021). Carrageenan-based nano-hybrid materials for the mitigation of hazardous environmental pollutants. International Journal of Biological Macromolecules, 190, 700–712. doi:10.1016/j.ijbiomac.2021.09.039.

adav, M., Gupta, R., & Sharma, R. K. (2019). Green and Sustainable Pathways for Wastewater Purification. Advances in Water Purification Techniques, 355–383, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-814790-0.00014-4.

Younas, F., Mustafa, A., Farooqi, Z. U. R., Wang, X., Younas, S., Mohy-Ud-din, W., Hameed, M. A., Abrar, M. M., Maitlo, A. A., Noreen, S., & Hussain, M. M. (2021). Current and emerging adsorbent technologies for wastewater treatment: Trends, limitations, and environmental implications. Water (Switzerland), 13(2), 215. doi:10.3390/w13020215.

Ji, F., Li, C., Tang, B., Xu, J., Lu, G., & Liu, P. (2012). Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution. Chemical Engineering Journal, 209, 325–333. doi:10.1016/j.cej.2012.08.014.

Cho, S., Kim, J. H., Yang, K. S., & Chang, M. (2021). Facile preparation of amino-functionalized polymeric microcapsules as efficient adsorbent for heavy metal ions removal. Chemical Engineering Journal, 425, 130645. doi:10.1016/j.cej.2021.130645.

Fan, S., Chen, J., Fan, C., Chen, G., Liu, S., Zhou, H., Liu, R., Zhang, Y., Hu, H., Huang, Z., Qin, Y., & Liang, J. (2021). Fabrication of a CO2-responsive chitosan aerogel as an effective adsorbent for the adsorption and desorption of heavy metal ions. Journal of Hazardous Materials, 416, 126225. doi:10.1016/j.jhazmat.2021.126225.

Yusop, H. M., Ismail, A. I. H. M., & Ismail, W. N. W. (2021). Preparation and characterization of new sol–gel hybrid inulin–teos adsorbent. Polymers, 13(8), 1295. doi:10.3390/polym13081295.

Akpomie, K. G., & Conradie, J. (2020). Efficient synthesis of magnetic nanoparticle-Musa acuminata peel composite for the adsorption of anionic dye. Arabian Journal of Chemistry, 13(9), 7115–7131. doi:10.1016/j.arabjc.2020.07.017.

Tee, G. T., Gok, X. Y., & Yong, W. F. (2022). Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. Environmental Research, 212, 113248. doi:10.1016/j.envres.2022.113248.

Wadhawan, S., Jain, A., Nayyar, J., & Mehta, S. K. (2020). Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. Journal of Water Process Engineering, 33, 101038. doi:10.1016/j.jwpe.2019.101038.

Wang, P., Du, M., Zhu, H., Bao, S., Yang, T., & Zou, M. (2015). Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: PH effect, kinetics, isotherms and mechanism. Journal of Hazardous Materials, 286, 533–544. doi:10.1016/j.jhazmat.2014.12.034.

Sherlala, A. I. A., Raman, A. A. A., Bello, M. M., & Buthiyappan, A. (2019). Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite. Journal of Environmental Management, 246, 547–556. doi:10.1016/j.jenvman.2019.05.117.

Tang, S., Lin, L., Wang, X., Yu, A., & Sun, X. (2021). Interfacial interactions between collected nylon microplastics and three divalent metal ions (Cu(II), Ni(II), Zn(II)) in aqueous solutions. Journal of Hazardous Materials, 403, 123548. doi:10.1016/j.jhazmat.2020.123548.

Rahaman, M. H., Islam, M. A., Islam, M. M., Rahman, M. A., & Alam, S. M. N. (2021). Biodegradable composite adsorbent of modified cellulose and chitosan to remove heavy metal ions from aqueous solution. Current Research in Green and Sustainable Chemistry, 4, 100119. doi:10.1016/j.crgsc.2021.100119.

Zaimee, M. Z. A., Sarjadi, M. S., & Rahman, M. L. (2021). Heavy metals removal from water by efficient adsorbents. Water (Switzerland), 13(19), 2659. doi:10.3390/w13192659.

Hassan, A. M., Wan Ibrahim, W. A., Bakar, M. B., Sanagi, M. M., Sutirman, Z. A., Nodeh, H. R., & Mokhter, M. A. (2020). New effective 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin-based silica coated graphene oxide adsorbent for removal of Pb(II) from aqueous environment. Journal of Environmental Management, 253, 109658. doi:10.1016/j.jenvman.2019.109658.

Duan, P., Yan, C., Zhou, W., & Ren, D. (2016). Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu(II) from wastewater. Ceramics International, 42(12), 13507–13518. doi:10.1016/j.ceramint.2016.05.143.

Tembhurkar, A. R., & Deshpande, R. (2012). Powdered Activated Lemon Peels as Adsorbent for Removal of Cutting Oil from Wastewater. Journal of Hazardous, Toxic, and Radioactive Waste, 16(4), 311–315. doi:10.1061/(asce)hz.2153-5515.0000132.

Ouyang, D., Zhuo, Y., Hu, L., Zeng, Q., Hu, Y., & He, Z. (2019). Research on the adsorption behavior of heavy metal ions by porous material prepared with silicate tailings. Minerals, 9(5), 291. doi:10.3390/min9050291.

Prajapati, A. K., Verma, P., Singh, S., Mondal, M. K., & Kooh, M. R. R. (2022). Adsorption-Desorption Surface Bindings, Kinetics, and Mass Transfer Behavior of Thermally and Chemically Treated Great Millet Husk towards Cr(VI) Removal from Synthetic Wastewater. Adsorption Science and Technology, 2022, 1–16. doi:10.1155/2022/3956977.

Padmavathy, K. S., Madhu, G., & Haseena, P. V. (2016). A study on Effects of pH, Adsorbent Dosage, Time, Initial Concentration and Adsorption Isotherm Study for the Removal of Hexavalent Chromium (Cr (VI)) from Wastewater by Magnetite Nanoparticles. Procedia Technology, 24, 585–594. doi:10.1016/j.protcy.2016.05.127.

Repo, E., Kurniawan, T. A., Warchol, J. K., & Sillanpää, M. E. T. (2009). Removal of Co(II) and Ni(II) ions from contaminated water using silica gel functionalized with EDTA and/or DTPA as chelating agents. Journal of Hazardous Materials, 171(1–3), 1071–1080. doi:10.1016/j.jhazmat.2009.06.111.

Ali, R. M., Hamad, H. A., Hussein, M. M., & Malash, G. F. (2016). Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecological Engineering, 91, 317–332. doi:10.1016/j.ecoleng.2016.03.015.

Repo, E., Warchoł, J. K., Bhatnagar, A., & Sillanpää, M. (2011). Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials. Journal of Colloid and Interface Science, 358(1), 261–267. doi:10.1016/j.jcis.2011.02.059.

Gupta, R., Gupta, S. K., & Pathak, D. D. (2019). Selective adsorption of toxic heavy metal ions using guanine-functionalized mesoporous silica [SBA-16-g] from aqueous solution. Microporous and Mesoporous Materials, 288, 109577. doi:10.1016/j.micromeso.2019.109577.

Zhang, C., Liu, S., Li, S., Tao, Y., Wang, P., Ma, X., & Chen, L. (2019). Enahanced biosorption of Cu(II) by magnetic chitosan microspheres immobilized Aspergillus sydowii (MCMAs) from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 581, 123813. doi:10.1016/j.colsurfa.2019.123813.

Ren, Y., Abbood, H. A., He, F., Peng, H., & Huang, K. (2013). Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption. Chemical Engineering Journal, 226, 300–311. doi:10.1016/j.cej.2013.04.059.

Li, G., Zhao, Z., Liu, J., & Jiang, G. (2011). Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. Journal of Hazardous Materials, 192(1), 277–283. doi:10.1016/j.jhazmat.2011.05.015.

Repo, E., Malinen, L., Koivula, R., Harjula, R., & Sillanpää, M. (2011). Capture of Co(II) from its aqueous EDTA-chelate by DTPA-modified silica gel and chitosan. Journal of Hazardous Materials, 187(1–3), 122–132. doi:10.1016/j.jhazmat.2010.12.113.

Azizian, S., & Eris, S. (2021). Adsorption isotherms and kinetics. Adsorption: Fundamental Processes and Applications, 445–509, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-818805-7.00011-4.

Pearlin Kiruba, U., Senthil Kumar, P., Sangita Gayatri, K., Shahul Hameed, S., Sindhuja, M., & Prabhakaran, C. (2015). Study of adsorption kinetic, mechanism, isotherm, thermodynamic, and design models for Cu(II) ions on sulfuric acid-modified Eucalyptus seeds: temperature effect. Desalination and Water Treatment, 56(11), 2948–2965. doi:10.1080/19443994.2014.966279.

Norfadhilatuladha, A., Tajuddin, M. H., Norhaniza, Y., Jaafar, J., Aziz, F., & Misdan, N. (2017). Penyingkiran Plumbum(II) daripada larutan akues mengunakan gentian nano karbon teraktif poliakrilonitril/zink oksida. Malaysian Journal of Analytical Sciences, 21(3), 619–626. doi:10.17576/mjas-2017-2103-11.

Habiba, U., Siddique, T. A., Li Lee, J. J., Joo, T. C., Ang, B. C., & Afifi, A. M. (2018). Adsorption study of methyl orange by chitosan/polyvinyl alcohol/zeolite electrospun composite nanofibrous membrane. Carbohydrate Polymers, 191, 79–85. doi:10.1016/j.carbpol.2018.02.081.

Phasuphan, W., Praphairaksit, N., & Imyim, A. (2019). Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified waste tire crumb rubber. Journal of Molecular Liquids, 294, 111554. doi:10.1016/j.molliq.2019.111554.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-09-03

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Wan Norfazilah Wan Ismail, Mohamad Irfan Arif Irwan Syah, Nur Hanisah Abd Muhet, Nurul Hidayah Abu Bakar, Hartina Mohd Yusop, Nurlin Abu Samah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message