Compilation of Parameter Control for Mapping the Potential Landslide Areas
Abstract
Doi: 10.28991/CEJ-2023-09-04-016
Full Text: PDF
Keywords
References
Depicker, A., Jacobs, L., Delvaux, D., Havenith, H. B., Maki Mateso, J. C., Govers, G., & Dewitte, O. (2020). The added value of a regional landslide susceptibility assessment: The western branch of the East African Rift. Geomorphology, 353, 106886. doi:10.1016/j.geomorph.2019.106886.
Steger, S., Mair, V., Kofler, C., Pittore, M., Zebisch, M., & Schneiderbauer, S. (2021). Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling – Benefits of exploring landslide data collection effects. Science of the Total Environment, 776, 145935. doi:10.1016/j.scitotenv.2021.145935.
Li, B., Wang, N., & Chen, J. (2021). GIS-Based Landslide Susceptibility Mapping Using Information, Frequency Ratio, and Artificial Neural Network Methods in Qinghai Province, Northwestern China. Advances in Civil Engineering, 2021(4758062), 1–14. doi:10.1155/2021/4758062.
Girma, F., Raghuvanshi, T. K., Ayenew, T., & Hailemariam, T. (2015). Landslide hazard zonation in Ada Berga district, Central ethiopia- A GIS based statistical approach. Journal of Geomatics, 9(1), 25–38.
Hearn, G. J., & Hart, A. B. (2019). Landslide susceptibility mapping: a practitioner’s view. Bulletin of Engineering Geology and the Environment, 78(8), 5811–5826. doi:10.1007/s10064-019-01506-1.
Information and Documentation Management Officer Batu City. (2022). Administrative Boundary Map of Batu City. Batu City Government, Batu, Indonesia. Available online: https://ppid.batukota.go.id/daftar_informasi (accessed on March 2023).
Hasan, M. F. R., Pradiptiya, A., Setiawan, Y., Agung, P. A. M., Susilo, A., & Sunaryo. (2022). Detection of groundwater sources in Lembor village using geoelectrical resistivity method schlumberger configuration. IOP Conference Series: Earth and Environmental Science, 1116(1), 012051. doi:10.1088/1755-1315/1116/1/012051.
Monsieurs, E., Dewitte, O., & Demoulin, A. (2019). A susceptibility-based rainfall threshold approach for landslide occurrence. Natural Hazards and Earth System Sciences, 19(4), 775–789. doi:10.5194/nhess-19-775-2019.
Fayez, L., Pazhman, D., Pham, B. T., Dholakia, M. B., Solanki, H. A., Khalid, M., & Prakash, I. (2018). Application of Frequency Ratio Model for the Development of Landslide Susceptibility Mapping at Part of Uttarakhand State, India. International Journal of Applied Engineering Research, 13(9), 6846–6854.
Santosa, S., & Atmawinata, S. (1992). Geological Map of The Kediri Quadrangle, Jawa. Geological Research and Development Centre, Bandung, Indonesia.
Hasan, M. F. R., Salimah, A., Susilo, A., Rahmat, A., Nurtanto, M., & Martina, N. (2022). Identification of Landslide Area Using Geoelectrical Resistivity Method as Disaster Mitigation Strategy. International Journal on Advanced Science, Engineering and Information Technology, 12(4), 1484–1490. doi:10.18517/ijaseit.12.4.14694.
Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897–1910. doi:10.1029/2000WR900090.
Kanungo, D. P., Pain, A., & Sharma, S. (2013). Finite element modeling approach to assess the stability of debris and rock slopes: A case study from the Indian Himalayas. Natural Hazards, 69(1), 1–24. doi:10.1007/s11069-013-0680-4.
Mersha, T., & Meten, M. (2020). GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia. Geoenvironmental Disasters, 7(1), 1–22. doi:10.1186/s40677-020-00155-x.
He, W., Chen, K., Hayatdavoudi, A., Sawant, K., & Lomas, M. (2019). Effects of clay content, cement and mineral composition characteristics on sandstone rock strength and deformability behaviors. Journal of Petroleum Science and Engineering, 176, 962–969. doi:10.1016/j.petrol.2019.02.016.
Pan, X., Nakamura, H., Nozaki, T., & Huang, X. (2008). A GIS-based landslide hazard assessment by multivariate analysis. Journal of the Japan Landslide Society, 45(3), 187–195. doi:10.3313/jls.45.187.
Pardeshi, S. D., Autade, S. E., & Pardeshi, S. S. (2013). Landslide hazard assessment: Recent trends and techniques. SpringerPlus, 2(1), 1–11. doi:10.1186/2193-1801-2-523.
Parise, M., & Jibson, R. W. (2000). A seismic landslide susceptibility rating of geologic units based on analysis of characterstics of landslides triggered by the 17 January, 1994 Northridge, California earthquake. Engineering Geology, 58(3–4), 251–270. doi:10.1016/S0013-7952(00)00038-7.
Peng, L., Niu, R., Huang, B., Wu, X., Zhao, Y., & Ye, R. (2014). Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology, 204, 287–301. doi:10.1016/j.geomorph.2013.08.013.
Turner, A. K., & Jayaprakash, G. P. (1996). Landslides: Investigation and Mitigation. Transportation Research Board, Washington, United States.
Vakhshoori, V., & Zare, M. (2016). Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomatics, Natural Hazards and Risk, 7(5), 1731–1752. doi:10.1080/19475705.2016.1144655.
Vojteková, J., & Vojtek, M. (2020). Assessment of landslide susceptibility at a local spatial scale applying the multi-criteria analysis and GIS: a case study from Slovakia. Geomatics, Natural Hazards and Risk, 11(1), 131–148. doi:10.1080/19475705.2020.1713233.
Wei, Z., Yin, G., Wang, J. G., Wan, L., & Jin, L. (2012). Stability analysis and supporting system design of a high-steep cut soil slope on an ancient landslide during highway construction of Tehran-Chalus. Environmental Earth Sciences, 67(6), 1651–1662. doi:10.1007/s12665-012-1606-2.
Woldearegay, K. (2013). Review of the occurrences and influencing factors of landslides in the highlands of Ethiopia: With implications for infrastructural development. Momona Ethiopian Journal of Science, 5(1), 3. doi:10.4314/mejs.v5i1.85329.
Xu, J. (2011). Debris slope stability analysis using three-dimensional finite element method based on maximum shear stress theory. Environmental Earth Sciences, 64(8), 2215–2222. doi:10.1007/s12665-011-1049-1.
Picarelli, L., Urciuoli, G., Mandolini, A., & Ramondini, M. (2006). Softening and instability of natural slopes in highly fissured plastic clay shales. Natural Hazards and Earth System Sciences, 6(4), 529–539. doi:10.5194/nhess-6-529-2006.
Springman, S. M., Thielen, A., Kienzler, P., & Friedel, S. (2013). A long-term field study for the investigation of rainfall-induced landslides. Geotechnique, 63(14), 1177–1193. doi:10.1680/geot.11.P.142.
Tomaszewski, B. (2020). Geographic Information Systems (GIS) for Disaster Management (2nd Ed.). Routledge, New York, United States. doi:10.4324/9781351034869.
DOI: 10.28991/CEJ-2023-09-04-016
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Putera Agung Maha Agung, Muhammad Fathur Rouf Hasan, Mustaffa Anjang Ahmad, Mohd. Juraidi Bin Ahmad, Umar Alfaruqi Abdurrahman, Agus Tugas Sudjianto, Adi Susilo
This work is licensed under a Creative Commons Attribution 4.0 International License.