Effect of Polypropylene Fibers on Swelling Potential and Shear Strength of Clay

Daksi M. Yacine, Sid Madani, Mehdi Dib


Expansive clays can cause major problems for urban development (roads, railways, infrastructure, etc.); therefore, reducing the swelling potential of clays has always been a concern in the geotechnical field. The presented paper investigates the effect of polypropylene reinforcement fibers on the swelling potential and shear strength of clay. The samples studied were taken from the clayey region of Mila, located in the northern east of Algeria. The experimental procedure adopted in this research consists first of the assessment of the physical, mechanical, and mineralogical characteristics of the soil samples without reinforcement. Then, swelling pressure, swelling rate, and swelling index are used to assess the swelling potential of these samples. After the reinforcement using a variety of polypropylene fiber concentrations (2 to 6% of the weight of the dry clay), the free swelling is clearly reduced. The optimum reinforcement rate in this case is 4%, in which the swelling was reduced by 90.7%. Finally, to offer more insights regarding the impact of clay reinforcement using polypropylene fibers, the effect of this later on the mechanical properties of the studied clay was also analyzed through the tangential shear strength. It was found that the polypropylene fibers increased the tangential shear resistance of Mila’s clay.


Doi: 10.28991/CEJ-2023-09-03-04

Full Text: PDF


Clay; Swelling Potential; Shear Strength; Polypropylene Fiber; Reinforcement.


Mohamed, A. E. M. K. (2013). Improvement of swelling clay properties using hay fibers. Construction and Building Materials, 38, 242–247. doi:10.1016/j.conbuildmat.2012.08.031.

Samuel, R., Puppala, A. J., Banerjee, A., Huang, O., Radovic, M., & Chakraborty, S. (2021). Improvement of Strength and Volume-Change Properties of Expansive Clays with Geopolymer Treatment. Transportation Research Record: Journal of the Transportation Research Board, 2675(9), 308–320. doi:10.1177/03611981211001842.

Phanikumar, B. R. (2009). Effect of lime and fly ash on swell, consolidation and shear strength characteristics of expansive clays: A comparative study. Geomechanics and Geoengineering, 4(2), 175–181. doi:10.1080/17486020902856983.

Yilmaz, I., & Civelekoglu, B. (2009). Gypsum: An additive for stabilization of swelling clay soils. Applied Clay Science, 44(1–2), 166–172. doi:10.1016/j.clay.2009.01.020.

Cai, Y., Shi, B., Ng, C. W. W., & Tang, C. sheng. (2006). Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Engineering Geology, 87(3–4), 230–240. doi:10.1016/j.enggeo.2006.07.007.

Akbulut, S., Arasan, S., & Kalkan, E. (2007). Modification of clayey soils using scrap tire rubber and synthetic fibers. Applied Clay Science, 38(1–2), 23–32. doi:10.1016/j.clay.2007.02.001.

Grabias-Blicharz, E., & Franus, W. (2022). A critical review on mechanochemical processing of fly ash and fly ash-derived materials. Science of the Total Environment, 160529. doi:10.1016/j.scitotenv.2022.160529.

Hussein, S. A., & Ali, H. A. A.-R. (2019). Stabilization of Expansive Soils Using Polypropylene Fiber. Civil Engineering Journal, 5(3), 624. doi:10.28991/cej-2019-03091274.

Narani, S. S., Abbaspour, M., Mir Mohammad Hosseini, S. M., Aflaki, E., & Moghadas Nejad, F. (2020). Sustainable reuse of Waste Tire Textile Fibers (WTTFs) as reinforcement materials for expansive soils: With a special focus on landfill liners/covers. Journal of Cleaner Production, 247, 119–151. doi:10.1016/j.jclepro.2019.119151.

Murthi, P., Saravanan, R., & Poongodi, K. (2020). Studies on the impact of polypropylene and silica fume blended combination on the material behaviour of black cotton soil. Materials Today: Proceedings, 39, 621–626. doi:10.1016/j.matpr.2020.09.004.

Tomar, A., Sharma, T., & Singh, S. (2019). Strength properties and durability of clay soil treated with mixture of nano silica and Polypropylene fiber. Materials Today: Proceedings, 26, 3449–3457. doi:10.1016/j.matpr.2019.12.239.

Kumar, S., Sahu, A. K., & Naval, S. (2021). Study on the swelling behavior of clayey soil blended with geocell and jute fibre. Civil Engineering Journal (Iran), 7(8), 1327–1340. doi:10.28991/cej-2021-03091728.

Viswanadham, B. V. S., Phanikumar, B. R., & Mukherjee, R. V. (2009). Swelling behaviour of a geofiber-reinforced expansive soil. Geotextiles and Geomembranes, 27(1), 73–76. doi:10.1016/j.geotexmem.2008.06.002.

Gheris, A., & Hamrouni, A. (2020). Treatment of an expansive soil using vegetable (DISS) fibre. Innovative Infrastructure Solutions, 5(1), 1–17. doi:10.1007/s41062-020-0281-5.

Maity, J., Chattopadhyay, B. C., & Mukherjee, S. P. (2018). Improvement of Characteristics of Clayey Soil Mixed with Randomly Distributed Natural Fibers. Journal of The Institution of Engineers (India): Series A, 99(1), 55–65. doi:10.1007/s40030-017-0244-9.

Kafodya, I., & Okonta, F. (2018). Effects of natural fiber inclusions and pre-compression on the strength properties of lime-fly ash stabilised soil. Construction and Building Materials, 170, 737–746. doi:10.1016/j.conbuildmat.2018.02.194.

Estabragh, A. R., Bordbar, A. T., & Javadi, A. A. (2013). A Study on the Mechanical Behavior of a Fiber-Clay Composite with Natural Fiber. Geotechnical and Geological Engineering, 31(2), 501–510. doi:10.1007/s10706-012-9602-6.

Vincenzini, A., Augarde, C. E., & Gioffrè, M. (2021). Experimental characterization of natural fibre–soil interaction: lessons for earthen construction. Materials and Structures/Materiaux et Constructions, 54(3), 110. doi:10.1617/s11527-021-01703-z.

Zhou, W. H., Yin, Z. Y., & Yuen, K. V. (2021). Selection of Physical and Chemical Properties of Natural Fibers for Predicting Soil Reinforcement. Practice of Bayesian Probability Theory in Geotechnical Engineering. Springer, Singapore. doi:10.1007/978-981-15-9105-1_9.

Yilmaz, Y. (2009). Experimental investigation of the strength properties of sand-clay mixtures reinforced with randomly distributed discrete polypropylene fibers. Geosynthetics International, 16(5), 354–363. doi:10.1680/gein.2009.16.5.354.

Pradhan, P. K., Kar, R. K., & Naik, A. (2012). Effect of Random Inclusion of Polypropylene Fibers on Strength Characteristics of Cohesive Soil. Geotechnical and Geological Engineering, 30(1), 15–25. doi:10.1007/s10706-011-9445-6.

Chen, M., Shen, S. L., Arulrajah, A., Wu, H. N., Hou, D. W., & Xu, Y. S. (2015). Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay. Geotextiles and Geomembranes, 43(6), 515–523. doi:10.1016/j.geotexmem.2015.05.004.

Pekrioglu Balkis, A. (2017). The effects of waste marble dust and polypropylene fiber contents on mechanical properties of gypsum stabilized earthen. Construction and Building Materials, 134, 556–562. doi:10.1016/j.conbuildmat.2016.12.172.

Reshma, T. V., Patnaikuni, C. K., Manjunatha, M., Bharath, A., & Tangadagi, R. B. (2022). Influence of alccofine and polypropylene fibers on stabilization of soil – An investigational study. International Journal of Advanced Technology and Engineering Exploration, 9(89), 551–562. doi:10.19101/IJATEE.2021.874996.

Al-Kaream, K. W. A., Fattah, M. Y., & Hameedi, M. K. (2022). Compressibility and Strength Development of Soft Soil by Polypropylene Fiber. International Journal of GEOMATE, 22(93), 91–97. doi:10.21660/2022.93.3206.

Yang, X., Liang, S., Hou, Z., Feng, D., Xiao, Y., & Zhou, S. (2022). Experimental Study on Strength of Polypropylene Fiber Reinforced Cemented Silt Soil. Applied Sciences (Switzerland), 12(16). doi:10.3390/app12168318.

Al-Neami, M., Raheel, F., & Al-Ani, Y. (2020). Behavior of Cohesive Soil Reinforced by Polypropylene Fiber. Engineering and Technology Journal, 38(6), 801–812. doi:10.30684/etj.v38i6a.109.

Wang, W., Lv, B., Zhang, C., Li, N., & Pu, S. (2022). Mechanical Characteristics of Lime-Treated Subgrade Soil Improved by Polypropylene Fiber and Class F Fly Ash. Polymers, 14(14). doi:10.3390/polym14142921.

Rajabi, A. M., Ghorashi, S. M. S., & Yeganeh, M. M. (2023). The effect of polypropylene and glass fibers on strength and failure behavior of clayey sand soil. Arabian Journal of Geosciences, 16(1). doi:10.1007/s12517-022-11111-4.

Athmania, D., Benaissa, A., Hammadi, A., & Bouassida, M. (2010). Clay and Marl Formation Susceptibility in Mila Province, Algeria. Geotechnical and Geological Engineering, 28(6), 805–813. doi:10.1007/s10706-010-9341-5.

Afès, M., & Didier, G. (2000). Stabilization of swelling soils: Case of a clay from Mila (Algeria). Bulletin of Engineering Geology and the Environment, 59(1), 75–83. doi:10.1007/s100649900022.

Khellaf, K., & Hamimed, M. (2018). Petro-Mineralogical and Geotechnical Analysis on the Clays of Constantinois Province (Mila North-East Algeria). Journal of Applied Environmental and Biological Science, 8(2), 14-22.

XP P94-041. (1995). Soil: investigation and testing. Granulometric description. Wet sieving method. AFNOR Standards, Paris, France. (In French).

NF P94-057. (1992). Soils investigation and testing. Granulometric analysis. Hydrometer method. AFNOR Standards, Paris, France. (In French).

NF P94-051. (1993). Soil: investigation and testing. Determination of Atterberg's limits. Liquid limit test using Casagrande apparatus. Plastic limit test on rolled thread. AFNOR Standards, Paris, France. (In French).

XP P94-060-1. (1997). Soils: investigation and testing. Shrinkage test. Part 1: determination of shrinkage characteristic on remoulded soil passing a 400 micrometers test sieve. AFNOR Standards, Paris, France. (In French).

ISO 17892-11:2019. (2019). Geotechnical investigation and testing-Laboratory testing of soil-Part 11: Permeability tests. International Organization for Standardization (ISO), Geneva, Switzerland.

NF P18-592. (1990). Aggregates. Methylene blue test. Spot test. AFNOR Standards, Paris, France. (In French).

NF P94-071-1. (1994). Soil investigation and testing. Direct shear test with shear box apparatus. Part 1: direct shear. AFNOR Standards, Paris, France. (In French).

XP P94-090. (1997). Soil: investigation and testing. Oedometric test. Part 1: compressibility test on quasi saturated fine-grained soil with loading in increments. AFNOR Standards, Paris, France. (In French).

NF P94-078. (1997). Soils: investigation and tests. CBR after immersion. Immediate CBR. Immediate bearing ratio. Measurement on sample compacted in CBR mould. AFNOR Standards, Paris, France. (In French).

NF P94-093. (2014). Soils: investigation and testing - Determination of the compaction reference values of a soil type - Standard proctor test - Modified proctor test. AFNOR Standards, Paris, France. (In French).

XP P94-091. (1995). Soil: investigation and testing. Swelling test with oedometer. Determination of deformations by loading several test pieces. AFNOR Standards, Paris, France. (In French).

Chen, F. H., & Ma, G. S. (1989). Swelling and shrinking behaviour of expansive clays. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(3–4), A126. doi:10.1016/0148-9062(89)92138-4.

Seed, H. B., Woodward, R. J., & Lundgren, R. (1962). Prediction of Swelling Potential for Compacted Clays. Journal of the Soil Mechanics and Foundations Division, 88(3), 53–87. doi:10.1061/jsfeaq.0000431.

Chassagneux, D., Stieljes, L., Mouroux, P., Ménilliet, F., & Ducreux, G. H. (1996). Mapping of the soil shrinkage-swelling hazard (drought-rain) at the departmental level. Methodological approach in the Alpes de Haute-Provence. Rapport BRGM n R39218, 6. (In French).

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-03-04


  • There are currently no refbacks.

Copyright (c) 2023 Mohamed Yacine Daksi, Madani Sid, Mehdi Dib

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.