Effect of Polypropylene Fibers on Swelling Potential and Shear Strength of Clay
Abstract
Doi: 10.28991/CEJ-2023-09-03-04
Full Text: PDF
Keywords
References
Mohamed, A. E. M. K. (2013). Improvement of swelling clay properties using hay fibers. Construction and Building Materials, 38, 242–247. doi:10.1016/j.conbuildmat.2012.08.031.
Samuel, R., Puppala, A. J., Banerjee, A., Huang, O., Radovic, M., & Chakraborty, S. (2021). Improvement of Strength and Volume-Change Properties of Expansive Clays with Geopolymer Treatment. Transportation Research Record: Journal of the Transportation Research Board, 2675(9), 308–320. doi:10.1177/03611981211001842.
Phanikumar, B. R. (2009). Effect of lime and fly ash on swell, consolidation and shear strength characteristics of expansive clays: A comparative study. Geomechanics and Geoengineering, 4(2), 175–181. doi:10.1080/17486020902856983.
Yilmaz, I., & Civelekoglu, B. (2009). Gypsum: An additive for stabilization of swelling clay soils. Applied Clay Science, 44(1–2), 166–172. doi:10.1016/j.clay.2009.01.020.
Cai, Y., Shi, B., Ng, C. W. W., & Tang, C. sheng. (2006). Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Engineering Geology, 87(3–4), 230–240. doi:10.1016/j.enggeo.2006.07.007.
Akbulut, S., Arasan, S., & Kalkan, E. (2007). Modification of clayey soils using scrap tire rubber and synthetic fibers. Applied Clay Science, 38(1–2), 23–32. doi:10.1016/j.clay.2007.02.001.
Grabias-Blicharz, E., & Franus, W. (2022). A critical review on mechanochemical processing of fly ash and fly ash-derived materials. Science of the Total Environment, 160529. doi:10.1016/j.scitotenv.2022.160529.
Hussein, S. A., & Ali, H. A. A.-R. (2019). Stabilization of Expansive Soils Using Polypropylene Fiber. Civil Engineering Journal, 5(3), 624. doi:10.28991/cej-2019-03091274.
Narani, S. S., Abbaspour, M., Mir Mohammad Hosseini, S. M., Aflaki, E., & Moghadas Nejad, F. (2020). Sustainable reuse of Waste Tire Textile Fibers (WTTFs) as reinforcement materials for expansive soils: With a special focus on landfill liners/covers. Journal of Cleaner Production, 247, 119–151. doi:10.1016/j.jclepro.2019.119151.
Murthi, P., Saravanan, R., & Poongodi, K. (2020). Studies on the impact of polypropylene and silica fume blended combination on the material behaviour of black cotton soil. Materials Today: Proceedings, 39, 621–626. doi:10.1016/j.matpr.2020.09.004.
Tomar, A., Sharma, T., & Singh, S. (2019). Strength properties and durability of clay soil treated with mixture of nano silica and Polypropylene fiber. Materials Today: Proceedings, 26, 3449–3457. doi:10.1016/j.matpr.2019.12.239.
Kumar, S., Sahu, A. K., & Naval, S. (2021). Study on the swelling behavior of clayey soil blended with geocell and jute fibre. Civil Engineering Journal (Iran), 7(8), 1327–1340. doi:10.28991/cej-2021-03091728.
Viswanadham, B. V. S., Phanikumar, B. R., & Mukherjee, R. V. (2009). Swelling behaviour of a geofiber-reinforced expansive soil. Geotextiles and Geomembranes, 27(1), 73–76. doi:10.1016/j.geotexmem.2008.06.002.
Gheris, A., & Hamrouni, A. (2020). Treatment of an expansive soil using vegetable (DISS) fibre. Innovative Infrastructure Solutions, 5(1), 1–17. doi:10.1007/s41062-020-0281-5.
Maity, J., Chattopadhyay, B. C., & Mukherjee, S. P. (2018). Improvement of Characteristics of Clayey Soil Mixed with Randomly Distributed Natural Fibers. Journal of The Institution of Engineers (India): Series A, 99(1), 55–65. doi:10.1007/s40030-017-0244-9.
Kafodya, I., & Okonta, F. (2018). Effects of natural fiber inclusions and pre-compression on the strength properties of lime-fly ash stabilised soil. Construction and Building Materials, 170, 737–746. doi:10.1016/j.conbuildmat.2018.02.194.
Estabragh, A. R., Bordbar, A. T., & Javadi, A. A. (2013). A Study on the Mechanical Behavior of a Fiber-Clay Composite with Natural Fiber. Geotechnical and Geological Engineering, 31(2), 501–510. doi:10.1007/s10706-012-9602-6.
Vincenzini, A., Augarde, C. E., & Gioffrè, M. (2021). Experimental characterization of natural fibre–soil interaction: lessons for earthen construction. Materials and Structures/Materiaux et Constructions, 54(3), 110. doi:10.1617/s11527-021-01703-z.
Zhou, W. H., Yin, Z. Y., & Yuen, K. V. (2021). Selection of Physical and Chemical Properties of Natural Fibers for Predicting Soil Reinforcement. Practice of Bayesian Probability Theory in Geotechnical Engineering. Springer, Singapore. doi:10.1007/978-981-15-9105-1_9.
Yilmaz, Y. (2009). Experimental investigation of the strength properties of sand-clay mixtures reinforced with randomly distributed discrete polypropylene fibers. Geosynthetics International, 16(5), 354–363. doi:10.1680/gein.2009.16.5.354.
Pradhan, P. K., Kar, R. K., & Naik, A. (2012). Effect of Random Inclusion of Polypropylene Fibers on Strength Characteristics of Cohesive Soil. Geotechnical and Geological Engineering, 30(1), 15–25. doi:10.1007/s10706-011-9445-6.
Chen, M., Shen, S. L., Arulrajah, A., Wu, H. N., Hou, D. W., & Xu, Y. S. (2015). Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay. Geotextiles and Geomembranes, 43(6), 515–523. doi:10.1016/j.geotexmem.2015.05.004.
Pekrioglu Balkis, A. (2017). The effects of waste marble dust and polypropylene fiber contents on mechanical properties of gypsum stabilized earthen. Construction and Building Materials, 134, 556–562. doi:10.1016/j.conbuildmat.2016.12.172.
Reshma, T. V., Patnaikuni, C. K., Manjunatha, M., Bharath, A., & Tangadagi, R. B. (2022). Influence of alccofine and polypropylene fibers on stabilization of soil – An investigational study. International Journal of Advanced Technology and Engineering Exploration, 9(89), 551–562. doi:10.19101/IJATEE.2021.874996.
Al-Kaream, K. W. A., Fattah, M. Y., & Hameedi, M. K. (2022). Compressibility and Strength Development of Soft Soil by Polypropylene Fiber. International Journal of GEOMATE, 22(93), 91–97. doi:10.21660/2022.93.3206.
Yang, X., Liang, S., Hou, Z., Feng, D., Xiao, Y., & Zhou, S. (2022). Experimental Study on Strength of Polypropylene Fiber Reinforced Cemented Silt Soil. Applied Sciences (Switzerland), 12(16). doi:10.3390/app12168318.
Al-Neami, M., Raheel, F., & Al-Ani, Y. (2020). Behavior of Cohesive Soil Reinforced by Polypropylene Fiber. Engineering and Technology Journal, 38(6), 801–812. doi:10.30684/etj.v38i6a.109.
Wang, W., Lv, B., Zhang, C., Li, N., & Pu, S. (2022). Mechanical Characteristics of Lime-Treated Subgrade Soil Improved by Polypropylene Fiber and Class F Fly Ash. Polymers, 14(14). doi:10.3390/polym14142921.
Rajabi, A. M., Ghorashi, S. M. S., & Yeganeh, M. M. (2023). The effect of polypropylene and glass fibers on strength and failure behavior of clayey sand soil. Arabian Journal of Geosciences, 16(1). doi:10.1007/s12517-022-11111-4.
Athmania, D., Benaissa, A., Hammadi, A., & Bouassida, M. (2010). Clay and Marl Formation Susceptibility in Mila Province, Algeria. Geotechnical and Geological Engineering, 28(6), 805–813. doi:10.1007/s10706-010-9341-5.
Afès, M., & Didier, G. (2000). Stabilization of swelling soils: Case of a clay from Mila (Algeria). Bulletin of Engineering Geology and the Environment, 59(1), 75–83. doi:10.1007/s100649900022.
Khellaf, K., & Hamimed, M. (2018). Petro-Mineralogical and Geotechnical Analysis on the Clays of Constantinois Province (Mila North-East Algeria). Journal of Applied Environmental and Biological Science, 8(2), 14-22.
XP P94-041. (1995). Soil: investigation and testing. Granulometric description. Wet sieving method. AFNOR Standards, Paris, France. (In French).
NF P94-057. (1992). Soils investigation and testing. Granulometric analysis. Hydrometer method. AFNOR Standards, Paris, France. (In French).
NF P94-051. (1993). Soil: investigation and testing. Determination of Atterberg's limits. Liquid limit test using Casagrande apparatus. Plastic limit test on rolled thread. AFNOR Standards, Paris, France. (In French).
XP P94-060-1. (1997). Soils: investigation and testing. Shrinkage test. Part 1: determination of shrinkage characteristic on remoulded soil passing a 400 micrometers test sieve. AFNOR Standards, Paris, France. (In French).
ISO 17892-11:2019. (2019). Geotechnical investigation and testing-Laboratory testing of soil-Part 11: Permeability tests. International Organization for Standardization (ISO), Geneva, Switzerland.
NF P18-592. (1990). Aggregates. Methylene blue test. Spot test. AFNOR Standards, Paris, France. (In French).
NF P94-071-1. (1994). Soil investigation and testing. Direct shear test with shear box apparatus. Part 1: direct shear. AFNOR Standards, Paris, France. (In French).
XP P94-090. (1997). Soil: investigation and testing. Oedometric test. Part 1: compressibility test on quasi saturated fine-grained soil with loading in increments. AFNOR Standards, Paris, France. (In French).
NF P94-078. (1997). Soils: investigation and tests. CBR after immersion. Immediate CBR. Immediate bearing ratio. Measurement on sample compacted in CBR mould. AFNOR Standards, Paris, France. (In French).
NF P94-093. (2014). Soils: investigation and testing - Determination of the compaction reference values of a soil type - Standard proctor test - Modified proctor test. AFNOR Standards, Paris, France. (In French).
XP P94-091. (1995). Soil: investigation and testing. Swelling test with oedometer. Determination of deformations by loading several test pieces. AFNOR Standards, Paris, France. (In French).
Chen, F. H., & Ma, G. S. (1989). Swelling and shrinking behaviour of expansive clays. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(3–4), A126. doi:10.1016/0148-9062(89)92138-4.
Seed, H. B., Woodward, R. J., & Lundgren, R. (1962). Prediction of Swelling Potential for Compacted Clays. Journal of the Soil Mechanics and Foundations Division, 88(3), 53–87. doi:10.1061/jsfeaq.0000431.
Chassagneux, D., Stieljes, L., Mouroux, P., Ménilliet, F., & Ducreux, G. H. (1996). Mapping of the soil shrinkage-swelling hazard (drought-rain) at the departmental level. Methodological approach in the Alpes de Haute-Provence. Rapport BRGM n R39218, 6. (In French).
DOI: 10.28991/CEJ-2023-09-03-04
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Mohamed Yacine Daksi, Madani Sid, Mehdi Dib

This work is licensed under a Creative Commons Attribution 4.0 International License.