Performance of Isolated Footing with Several Corrosion Levels under Axial Loading
Abstract
Doi: 10.28991/CEJ-2023-09-06-011
Full Text: PDF
Keywords
References
Yan, X., & Yu, H. (2022). Numerical simulation of hydraulic fracturing with consideration of the pore pressure distribution based on the unified pipe-interface element model. Engineering Fracture Mechanics, 275. doi:10.1016/j.engfracmech.2022.108836.
Ye, H., Fu, C., Tian, Y., & Jin, N. (2020). Chloride-induced steel corrosion in concrete under service loads. Springer, Singapore. doi:10.1007/978-981-15-4108-7.
Shang, Z., Zheng, S., Zheng, H., Li, Y. L., & Dong, J. (2022). Seismic behavior and damage evolution of corroded RC columns designed for bending failure in an artificial climate. Structures, 38, 184–201. doi:10.1016/j.istruc.2022.01.072.
Ma, Y., Che, Y., & Gong, J. (2012). Behavior of corrosion damaged circular reinforced concrete columns under cyclic loading. Construction and Building Materials, 29, 548–556. doi:10.1016/j.conbuildmat.2011.11.002.
Zaghian, S., Martín-Pérez, B., & Almansour, H. (2023). Finite element modelling of bridge piers subjected to eccentric load combined with reinforcement corrosion. Engineering Structures, 283, 0141–0296. doi:10.1016/j.engstruct.2023.115822.
El-Joukhadar, N., Dameh, F., & Pantazopoulou, S. (2023). Seismic Modelling of Corroded Reinforced Concrete Columns. Engineering Structures, 275, 0141–0296. doi:10.1016/j.engstruct.2022.115251.
Wang, Y., Wang, W., Huang, J., & Luo, L. (2023). Effect of corrosion on soil-structure interfacial shearing property and bearing capacity of steel foundation in submarine soil environment. Computers and Geotechnics, 156, 0266–352. doi:10.1016/j.compgeo.2023.105269.
Wang, W., Wang, Y., Huang, J., & Luo, L. (2022). Surface roughness characteristics and stochastic model of corroded steel foundation in submarine soil environment. Ocean Engineering, 251, 0029–8018. doi:10.1016/j.oceaneng.2022.111177.
Li, M., Shen, D., Yang, Q., Cao, X., Huang, C., Cui, Z., & Qi, Y. (2023). Effect of reinforcement corrosion on the seismic performance of reinforced concrete shear walls. Construction and Building Materials, 377, 0950–0618. doi:10.1016/j.conbuildmat.2023.130977.
Han, X., Wang, P., Cui, D., Tawfik, T. A., Chen, Z., Tian, L., & Gao, Y. (2023). Rebar corrosion detection in concrete based on capacitance principle. Measurement, 209, 112526. doi:10.1016/j.measurement.2023.112526.
Zheng, Y., Zheng, S. S., Yang, L., Dong, L. G., Ruan, S., & Ming, M. (2022). Experimental study on the seismic behavior of corroded reinforced concrete walls in an artificial climate corrosion environment. Engineering Structures, 252, 0141–0296. doi:10.1016/j.engstruct.2021.113469.
Zhao, J., Lin, Y., Li, X., & Meng, Q. (2021). Experimental study on the cyclic behavior of reinforced concrete bridge piers with non-uniform corrosion. Structures, 33, 999–1006. doi:10.1016/j.istruc.2021.04.060.
Hu, Z., Hua, L., Liu, J., Min, S., Li, C., & Wu, F. (2021). Numerical simulation and experimental verification of random pitting corrosion characteristics. Ocean Engineering, 240, 0029–8018. doi:10.1016/j.oceaneng.2021.110000.
Altoubat, S., Maalej, M., & Shaikh, F. U. A. (2016). Laboratory Simulation of Corrosion Damage in Reinforced Concrete. International Journal of Concrete Structures and Materials, 10(3), 383–391. doi:10.1007/s40069-016-0138-7.
Kashani, M. M., Lowes, L. N., Crewe, A. J., & Alexander, N. A. (2016). Computational modelling strategies for nonlinear response prediction of corroded circular RC bridge piers. Advances in Materials Science and Engineering, 2016, 15. doi:10.1155/2016/2738265.
Mohammed, A. M. Y., Ahmed, A., & Maekawa, K. (2020). Comparative Nonlinear Behavior of Corroded Circular and Square RC Columns. KSCE Journal of Civil Engineering, 24(7), 2110–2119. doi:10.1007/s12205-020-1730-6.
Khalid, N. (2018). Strength Reduction of Reinforced Concrete Columns Subjected to Corrosion Related Cover Spalling. Ph.D. Thesis, University of Akron, Columbus, United States.
Fang, L., Zhou, Y., Yi, D., & Yi, W. (2021). Experimental study on flexural capacity of corroded RC slabs reinforced with basalt fiber textile. Applied Sciences (Switzerland), 11(1), 1–25. doi:10.3390/app11010144.
E203-2018. (2018). Egyptian code for design and construction of reinforced concrete structures. Egyptian Code of Practice, Utilities and Urban Communities, Ministry of Housing, Cairo, Egypt.
Li, Q., Jin, X., Yan, D., Fu, C., & Xu, J. (2021). Study of wiring method on accelerated corrosion of steel bars in concrete. Construction and Building Materials, 269, 121286. doi:10.1016/j.conbuildmat.2020.121286.
Van Steen, C., Verstrynge, E., Wevers, M., & Vandewalle, L. (2019). Assessing the bond behaviour of corroded smooth and ribbed rebars with acoustic emission monitoring. Cement and Concrete Research, 120, 176–186. doi:10.1016/j.cemconres.2019.03.023.
Abaqus 6.14. (2014). Abaqus 6.14 analysis user’s Guide. Abaqus Inc., Johnston, United States. Available online: https://www.3ds.com/products-services/simulia/ (accessed on April 2023).
Taqi, F. Y., Mashrei, M. A., & Oleiwi, H. M. (2021). Numerical Analysis of Corrosion Reinforcements in Fibrous Concrete Beams. Civil and Environmental Engineering, 17(1), 259–269. doi:10.2478/cee-2021-0027.
German, M., & Pamin, J. (2015). FEM simulations of cracking in RC beams due to corrosion progress. Archives of Civil and Mechanical Engineering, 15(4), 1160–1172. doi:10.1016/j.acme.2014.12.010.
DOI: 10.28991/CEJ-2023-09-06-011
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Ahmed Mohammed Youssef Mohammed, Mahmoud Hegazy Fouda, Hatem Mostafa
This work is licensed under a Creative Commons Attribution 4.0 International License.