Physiological-based Driver Monitoring Systems: A Scoping Review
Vol. 8 No. 12 (2022): December
Review Articles
Downloads
Doi: 10.28991/CEJ-2022-08-12-020
Full Text: PDF
Abdul Razak, S. F., Yogarayan, S., Abdul Aziz, A., Abdullah, M. F. A., & Kamis, N. H. (2022). Physiological-based Driver Monitoring Systems: A Scoping Review. Civil Engineering Journal, 8(12), 3952–3967. https://doi.org/10.28991/CEJ-2022-08-12-020
[1] Guettas, A., Ayad, S., & Kazar, O. (2019). Driver State Monitoring System. Proceedings of the 4th International Conference on Big Data and Internet of Things, 28, 1-7. doi:10.1145/3372938.3372966.
[2] Halin, A., Verly, J. G., & Van Droogenbroeck, M. (2021). Survey and synthesis of state of the art in driver monitoring. Sensors, 21(16), 5558. doi:10.3390/s21165558.
[3] Lobo, A., Ferreira, S., & Couto, A. (2020). Exploring monitoring systems data for driver distraction and drowsiness research. Sensors (Switzerland), 20(14), 1–15. doi:10.3390/s20143836.
[4] Manstetten, D., Beruscha, F., Bieg, H. J., Kobiela, F., Korthauer, A., Krautter, W., & Marberger, C. (2020). The Evolution of Driver Monitoring Systems: A Shortened Story on Past, Current and Future Approaches How Cars Acquire Knowledge About the Driver's State. 22nd International Conference on Human-Computer Interaction with Mobile Devices and Services. doi:10.1145/3406324.3425896.
[5] Meteier, Q., Capallera, M., Ruffieux, S., Angelini, L., Abou Khaled, O., Mugellini, E., Widmer, M., & Sonderegger, A. (2021). Classification of Drivers' Workload Using Physiological Signals in Conditional Automation. Frontiers in Psychology, 12. doi:10.3389/fpsyg.2021.596038.
[6] Castro, I. D., Mercuri, M., Patel, A., Puers, R., Van Hoof, C., & Torfs, T. (2019). Physiological driver monitoring using capacitively coupled and radar sensors. Applied Sciences (Switzerland), 9(19), 3994. doi:10.3390/app9193994.
[7] Doudou, M. S., Bouabdallah, A., & Cherfaoui, V. (2018). A light on physiological sensors for efficient driver drowsiness detection system. Sensors & Transducers Journal, 224(8), 39-50.
[8] Darzi, A., Gaweesh, S. M., Ahmed, M. M., & Novak, D. (2018). Identifying the causes of drivers' hazardous states using driver characteristics, vehicle kinematics, and physiological measurements. Frontiers in Neuroscience, 12. doi:10.3389/fnins.2018.00568.
[9] Chowdhury, A., Shankaran, R., Kavakli, M., & Haque, M. M. (2018). Sensor Applications and Physiological Features in Drivers' Drowsiness Detection: A Review. IEEE Sensors Journal, 18(8), 3055–3067. doi:10.1109/JSEN.2018.2807245.
[10] Arakawa, T. (2021). A review of heartbeat detection systems for automotive applications. Sensors, 21(18), 6112. doi:10.3390/s21186112.
[11] Guo, K., Zhai, T., Purushothama, M. H., Dobre, A., Meah, S., Pashollari, E., Vaish, A., Dewilde, C., & Islam, M. N. (2022). Contactless Vital Sign Monitoring System for In-Vehicle Driver Monitoring Using a Near-Infrared Time-of-Flight Camera. Applied Sciences (Switzerland), 12(9). doi:10.3390/app12094416.
[12] Radhakrishnan, V., Merat, N., Louw, T., Gonçalves, R. C., Torrao, G., Lyu, W., Puente Guillen, P., & Lenné, M. G. (2022). Physiological indicators of driver workload during car-following scenarios and takeovers in highly automated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 87, 149–163. doi:10.1016/j.trf.2022.04.002.
[13] Persson, A., Jonasson, H., Fredriksson, I., Wiklund, U., & Ahlstrom, C. (2021). Heart Rate Variability for Classification of Alert Versus Sleep Deprived Drivers in Real Road Driving Conditions. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3316–3325. doi:10.1109/TITS.2020.2981941.
[14] Murugan, S., Selvaraj, J., & Sahayadhas, A. (2019). Analysis of Different Measures to Detect Driver States: A Review. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India. doi:10.1109/icscan.2019.8878844.
[15] Warnecke, J. M., Ganapathy, N., Koch, E., Dietzel, A., Flormann, M., Henze, R., & Deserno, T. M. (2022). Printed and Flexible ECG Electrodes Attached to the Steering Wheel for Continuous Health Monitoring during Driving. Sensors, 22(11), 4198. doi:10.3390/s22114198.
[16] Wang, C. S., Huang, Y. C., Wang, T. W., & Lee, S. H. (2019). Monitor a driver behavior by ECG measurement. International Journal of Information and Education Technology, 9(3), 184–188. doi:10.18178/ijiet.2019.9.3.1196.
[17] Balam, V. P., & Chinara, S. (2021). Development of single-channel electroencephalography signal analysis model for real-time drowsiness detection. Physical and Engineering Sciences in Medicine, 44(3), 713-726. doi:10.1007/s13246-021-01020-3.
[18] Balandong, R. P., Ahmad, R. F., Saad, M. N. M., & Malik, A. S. (2018). A review on EEG-based automatic sleepiness detection systems for driver. Ieee Access, 6, 22908-22919. doi:10.1109/ACCESS.2018.2811723.
[19] Jiao, Y., Deng, Y., Luo, Y., & Lu, B. L. (2020). Driver sleepiness detection from EEG and EOG signals using GAN and LSTM networks. Neurocomputing, 408, 100–111. doi:10.1016/j.neucom.2019.05.108.
[20] Bulagang, A. F., Weng, N. G., Mountstephens, J., & Teo, J. (2020). A review of recent approaches for emotion classification using electrocardiography and electrodermography signals. Informatics in Medicine Unlocked, 20, 100363. doi:10.1016/j.imu.2020.100363.
[21] Rahman, N.A.A., Mustafa, M., Sulaiman, N., Samad, R., Abdullah, N.R.H. (2022). EMG Signal Segmentation to Predict Driver's Vigilance State. Human-Centered Technology for a Better Tomorrow. Lecture Notes in Mechanical Engineering, Springer, Singapore. doi:10.1007/978-981-16-4115-2_3.
[22] Hayawi, A. A., & Waleed, J. (2019). Driver's drowsiness monitoring and alarming auto-system based on EOG signals. 2019 2nd International Conference on Engineering Technology and its Applications (IICETA). doi:10.1109/IICETA47481.2019.9013000.
[23] Bhardwaj, R., Parameswaran, S., & Balasubramanian, V. (2018). Comparison of Driver Fatigue Trend on simulator and on-road driving based on EMG correlation. 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS). doi:10.1109/iciinfs.2018.8721431.
[24] Rahman, H., Ahmed, M. U., & Begum, S. (2020). Non-Contact Physiological Parameters Extraction Using Facial Video Considering Illumination, Motion, Movement and Vibration. IEEE Transactions on Biomedical Engineering, 67(1), 88–98. doi:10.1109/TBME.2019.2908349.
[25] Amidei, A., Fallica, P. G., Conoci, S., & Pavan, P. (2021). Validating Photoplethysmography (PPG) data for driver drowsiness detection. 2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive), Bologna, Italy. doi:10.1109/metroautomotive50197.2021.9502865.
[26] Sikander, G., & Anwar, S. (2019). Driver Fatigue Detection Systems: A Review. IEEE Transactions on Intelligent Transportation Systems, 20(6), 2339–2352. doi:10.1109/TITS.2018.2868499.
[27] Arksey, H., & O'Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology: Theory and Practice, 8(1), 19–32. doi:10.1080/1364557032000119616.
[28] Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., ... Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine, 169(7), 467–473. doi:10.7326/m18-0850.
[29] Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan-a web and mobile app for systematic reviews. Systematic Reviews, 5(1). doi:10.1186/s13643-016-0384-4.
[30] van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. doi:10.1007/s11192-009-0146-3.
[31] Choi, G., Lim, K., & Pan, S. B. (2022). Driver Identification System Using 2D ECG and EMG Based on Multistream CNN for Intelligent Vehicle. IEEE Sensors Letters, 6(6), 6001904. doi:10.1109/LSENS.2022.3175787.
[32] Choi, G. H., Lim, K., & Pan, S. B. (2020). Driver Identification System Using Normalized Electrocardiogram Based on Adaptive Threshold Filter for Intelligent Vehicles. Sensors, 21(1), 202. doi:10.3390/s21010202.
[33] Inalegwu, O. C., Maliki, D., Agajo, J., Ajao, L. A., & Abu, A. D. (2018). (2018). Fingerprint Based Driver'S Identification System. I-Manager's Journal on Pattern Recognition, 5(2), 30. doi:10.26634/jpr.5.2.15730.
[34] Lin, X., Zhang, K., Cao, W., & Zhang, L. (2018). Driver Evaluation and Identification Based on Driving Behavior Data. 2018 5th International Conference on Information Science and Control Engineering (ICISCE). doi:10.1109/icisce.2018.00154.
[35] Ezzini, S., Berrada, I., & Ghogho, M. (2018). Who is behind the wheel? Driver identification and fingerprinting. Journal of Big Data, 5(1). doi:10.1186/s40537-018-0118-7.
[36] Thanda Swe, K., & Kyaw, T. (2020). Fingerprint RFID Recognition System. International Journal of Creative and Innovative Research, 3(1), 21–25.
[37] Santos, A., Medeiros, I., Resque, P., Rosário, D., Nogueira, M., Santos, A., Cerqueira, E., & Chowdhury, K. R. (2018). ECG-Based User Authentication and Identification Method on VANETs. Proceedings of the 10th Latin America Networking Conference. doi:10.1145/3277103.3277138.
[38] Zero, E., Bersani, C., & Sacile, R. (2021). EEG Real Time Analysis for Driver's Arm Movements Identification. Sensors & Transducers, 251(4), 11-18.
[39] Karumudi, B. R., Gist, P., Shahzad, M. Q., & Wagner, G. M. (2019). Biometric Authentication for Automobiles. Syracuse University, New York, United States.
[40] Rundo, F., & Battiato, S. (2022). Deep Learning Sobriety Monitoring System in Road-driven Car Driving Risk Assessment Pipeline. 2022 5th International Conference on Circuits, Systems and Simulation, ICCSS 2022, 166–172. doi:10.1109/ICCSS55260.2022.9802349.
[41] Vismaya, U. K., & Saritha, E. (2020). A Review on Driver Distraction Detection Methods. 2020 International Conference on Communication and Signal Processing (ICCSP). doi:10.1109/iccsp48568.2020.9182316.
[42] Ghandour, R., Neji, B., El-Rifaie, A. M., & Al Barakeh, Z. (2020). Driver Distraction and Stress Detection Systems: A Review. International Journal of Engineering and Applied Sciences (IJEAS), 7(4), 39–46. doi:10.31873/ijeas.7.04.10.
[43] Moslemi, N., Soryani, M., & Azmi, R. (2021). Computer vision-based recognition of driver distraction: A review. Concurrency and Computation: Practice and Experience, 33(24). doi:10.1002/cpe.6475.
[44] Zheng, W. L., Gao, K., Li, G., Liu, W., Liu, C., Liu, J. Q., Wang, G., & Lu, B. L. (2020). Vigilance Estimation Using a Wearable EOG Device in Real Driving Environment. IEEE Transactions on Intelligent Transportation Systems, 21(1), 170–184. doi:10.1109/TITS.2018.2889962.
[45] Song, K., Zhou, L., & Wang, H. (2021). Deep coupling recurrent auto-encoder with multi-modal EEG and EOG for vigilance estimation. Entropy, 23(10), 1316. doi:10.3390/e23101316.
[46] Gjoreski, M., Gams, M. Z., LuŠ¡trek, M., Genc, P., Garbas, J. U., & Hassan, T. (2020). Machine Learning and End-to-End Deep Learning for Monitoring Driver Distractions from Physiological and Visual Signals. IEEE Access, 8, 70590–70603. doi:10.1109/ACCESS.2020.2986810.
[47] Li, P., Li, Y., Yao, Y., Wu, C., Nie, B., & Li, S. E. (2022). Sensitivity of Electrodermal Activity Features for Driver Arousal Measurement in Cognitive Load: The Application in Automated Driving Systems. IEEE Transactions on Intelligent Transportation Systems, 23(9), 14954–14967. doi:10.1109/TITS.2021.3135266.
[48] Kang, Z., & Yang, X. (2020). Fatigue Driving Characteristics Analysis Based on Data of Driver Monitoring System. CICTP 2020. doi:10.1061/9780784482933.370.
[49] Laouz, H., Ayad, S., & Terrissa, L. S. (2020). Literature Review on Driver's Drowsiness and Fatigue Detection. 2020 International Conference on Intelligent Systems and Computer Vision (ISCV). doi:10.1109/iscv49265.2020.9204306.
[50] Gyulyev, N., Galkin, A., Schlosser, T., Capayova, S., Lobashov, O. (2022). Assessing Driver Fatigue during Urban Traffic Congestion Using ECG Method. Dynamics in Logistics. LDIC 2022. Lecture Notes in Logistics, Springer, Cham, Switzerland. doi:10.1007/978-3-031-05359-7_36.
[51] Low, I., Molesworth, B. R. C., & Burgess, M. (2021). The fatiguing effect of broadband noise: An EEG-based study. Accident Analysis & Prevention, 151, 105901. doi:10.1016/j.aap.2020.105901.
[52] Wang, H., Dragomir, A., Abbasi, N. I., Li, J., Thakor, N. V., & Bezerianos, A. (2018). A novel real-time driving fatigue detection system based on wireless dry EEG. Cognitive Neurodynamics, 12(4), 365–376. doi:10.1007/s11571-018-9481-5.
[53] Liu, L., Ji, Y., Gao, Y., Ping, Z., Kuang, L., Li, T., & Xu, W. (2021). A Novel Fatigue Driving State Recognition and Warning Method Based on EEG and EOG Signals. Journal of Healthcare Engineering, 2021. doi:10.1155/2021/7799793.
[54] Jiang, Y., Zhang, Y., Lin, C., Wu, D., & Lin, C. T. (2021). EEG-Based Driver Drowsiness Estimation Using an Online Multi-View and Transfer TSK Fuzzy System. IEEE Transactions on Intelligent Transportation Systems, 22(3), 1752–1764. doi:10.1109/TITS.2020.2973673.
[55] Hu, J., & Min, J. (2018). Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model. Cognitive Neurodynamics, 12(4), 431–440. doi:10.1007/s11571-018-9485-1.
[56] Sheykhivand, S., Rezaii, T. Y., Mousavi, Z., Meshgini, S., Makouei, S., Farzamnia, A., Danishvar, S., & Teo Tze Kin, K. (2022). Automatic Detection of Driver Fatigue Based on EEG Signals Using a Developed Deep Neural Network. Electronics (Switzerland), 11(14), 2169. doi:10.3390/electronics11142169.
[57] Nemcova, A., Svozilova, V., Bucsuhazy, K., Smisek, R., Mezl, M., Hesko, B., Belak, M., Bilik, M., Maxera, P., Seitl, M., Dominik, T., Semela, M., Sucha, M., & Kolar, R. (2021). Multimodal Features for Detection of Driver Stress and Fatigue: Review. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3214–3233. doi:10.1109/TITS.2020.2977762.
[58] Chaudhuri, A., & Routray, A. (2020). Driver Fatigue Detection through Chaotic Entropy Analysis of Cortical Sources Obtained from Scalp EEG Signals. IEEE Transactions on Intelligent Transportation Systems, 21(1), 185–198. doi:10.1109/TITS.2018.2890332.
[59] Ren, Z., Li, R., Chen, B., Zhang, H., Ma, Y., Wang, C., Lin, Y., & Zhang, Y. (2021). EEG-Based Driving Fatigue Detection Using a Two-Level Learning Hierarchy Radial Basis Function. Frontiers in Neurorobotics, 15. doi:10.3389/fnbot.2021.618408.
[60] Gaio, A., & Cugurullo, F. (2022). Cyclists and autonomous vehicles at odds: Can the Transport Oppression Cycle be Broken in the Era of Artificial Intelligence?. AI & Society, 1-15. doi:10.1007/s00146-022-01538-4.
[61] Dong, N., Li, Y., Gao, Z., Ip, W. H., & Yung, K. L. (2019). A WPCA-based method for detecting fatigue driving from EEG-based internet of vehicles system. IEEE Access, 7, 124702–124711. doi:10.1109/ACCESS.2019.2937914.
[62] Lu, J., Zheng, X., Tang, L., Zhang, T., Sheng, Q. Z., Wang, C., Jin, J., Yu, S., & Zhou, W. (2021). Can Steering Wheel Detect Your Driving Fatigue? IEEE Transactions on Vehicular Technology, 70(6), 5537–5550. doi:10.1109/tvt.2021.3072936.
[63] Wörle, J., Metz, B., Thiele, C., & Weller, G. (2019). Detecting sleep in drivers during highly automated driving: The potential of physiological parameters. IET Intelligent Transport Systems, 13(8), 1241–1248. doi:10.1049/iet-its.2018.5529.
[64] Buendia, R., Forcolin, F., Karlsson, J., Arne Sjöqvist, B., Anund, A., & Candefjord, S. (2019). Deriving heart rate variability indices from cardiac monitoring”An indicator of driver sleepiness. Traffic Injury Prevention, 20(3), 249–254. doi:10.1080/15389588.2018.1548766.
[65] Lu, K., Karlsson, J., Dahlman, A. S., Sjoqvist, B. A., & Candefjord, S. (2022). Detecting Driver Sleepiness Using Consumer Wearable Devices in Manual and Partial Automated Real-Road Driving. IEEE Transactions on Intelligent Transportation Systems, 23(5), 4801–4810. doi:10.1109/TITS.2021.3127944.
[66] Fujiwara, K., Abe, E., Kamata, K., Nakayama, C., Suzuki, Y., Yamakawa, T., Hiraoka, T., Kano, M., Sumi, Y., Masuda, F., Matsuo, M., & Kadotani, H. (2019). Heart Rate Variability-Based Driver Drowsiness Detection and Its Validation with EEG. IEEE Transactions on Biomedical Engineering, 66(6), 1769–1778. doi:10.1109/TBME.2018.2879346.
[67] Antunes, A. R., Meneses, M. V. P. R., Goncalves, J., & Braga, A. C. (2022). An Intelligent System to Detect Drowsiness at the Wheel. 2022 10th International Symposium on Digital Forensics and Security (ISDFS). doi:10.1109/isdfs55398.2022.9800836.
[68] Chen, H., & Chen, L. (2017). Support vector machine classification of drunk driving behaviour. International Journal of Environmental Research and Public Health, 14(1). doi:10.3390/ijerph14010108.
[69] Barua, S., Ahmed, M. U., Ahlström, C., & Begum, S. (2019). Automatic driver sleepiness detection using EEG, EOG and contextual information. Expert Systems with Applications, 115, 121–135. doi:10.1016/j.eswa.2018.07.054.
[70] Chen, J., Wang, H., & Hua, C. (2018). Assessment of driver drowsiness using electroencephalogram signals based on multiple functional brain networks. International Journal of Psychophysiology, 133, 120–130. doi:10.1016/j.ijpsycho.2018.07.476.
[71] Rachakonda, L., Mohanty, S. P., Kougianos, E., & Sayeed, M. A. (2020). Smart-Steering: An IoMT-Device to Monitor Blood Alcohol Concentration using Physiological Signals. 2020 IEEE International Conference on Consumer Electronics (ICCE). doi:10.1109/icce46568.2020.9043045.
[72] Subramaniyam, M., Kim, S. E., Min, S. N., Lee, H., Hong, S. H., & Park, S. J. (2018). Study of effects of blood alcohol consumption (BAC) level on drivers physiological behavior and driving performance under simulated environment. International Journal of Engineering and Technology (UAE), 7(2), 86–91. doi:10.14419/ijet.v7i2.8.10336.
[73] Xing, Q., Chen, Z., Zhang, Z., Wang, R., & Zhang, T. (2021). Modelling driving and charging behaviours of electric vehicles using a data-driven approach combined with behavioural economics theory. Journal of Cleaner Production, 324, 129243. doi:10.1016/j.jclepro.2021.129243.
[74] Sanguansri, P., Apiwong-Ngam, N., Ngamjarurojana, A., & Choopun, S. (2022). Development of non-invasive alcohol analyzer using Photoplethysmographytle. Journal of Physics: Conference Series, 2145(1). doi:10.1088/1742-6596/2145/1/012059.
[75] Wang, W. F., Yang, C. Y., & Wu, Y. F. (2018). SVM-based classification method to identify alcohol consumption using ECG and PPG monitoring. Personal and Ubiquitous Computing, 22(2), 275–287. doi:10.1007/s00779-017-1042-0.
[76] Evin, M., Taillard, J., De la Fuente, H. L., Galy, E., & Berthelon, C. (2018). Detection of functional state after alcohol consumption by classification and machine learning technics. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2237-2242. doi:10.1109/BIBM.2018.8621310.
[77] Chen, Y. Y., Lin, C. L., Lin, Y. C., & Zhao, C. (2018). Non-invasive detection of alcohol concentration based on photoplethysmogram signals. IET Image Processing, 12(2), 188–193. doi:10.1049/iet-ipr.2017.0625.
[78] Chhabra, G., Sapra, V., Sharma, R., Bansal, R., Joshi, M., & Joshi, K. (2021). Design Engineering Eye State Classification Based on EEG Signals. Design Engineering, 6, 2544–2551.
[79] Won Park, S., won Choi, J., Hyun Kim, T., Hun Seo, J., Gyu Jeong, M., In Lee, K., & Sung Kim, H. (2022). Prediction of Alcohol Consumption Based on Biosignals and Assessment of Driving Ability According to Alcohol Consumption. Journal of Biomedical Engineering Research, 43, 27–34. doi:10.9718/JBER.2022.43.1.27.
[80] Ye, Y., Ma, L., Liu, J., Zhang, Z., Gu, C., & Mao, J. F. (2022). A Novel Non-Contact Drunkenness Monitoring Technique Based on A 24-GHz Interferometric Radar System. 2022 IEEE MTT-S International Microwave Biomedical Conference, IMBioC 2022, 296–298. doi:10.1109/IMBioC52515.2022.9790121.
[2] Halin, A., Verly, J. G., & Van Droogenbroeck, M. (2021). Survey and synthesis of state of the art in driver monitoring. Sensors, 21(16), 5558. doi:10.3390/s21165558.
[3] Lobo, A., Ferreira, S., & Couto, A. (2020). Exploring monitoring systems data for driver distraction and drowsiness research. Sensors (Switzerland), 20(14), 1–15. doi:10.3390/s20143836.
[4] Manstetten, D., Beruscha, F., Bieg, H. J., Kobiela, F., Korthauer, A., Krautter, W., & Marberger, C. (2020). The Evolution of Driver Monitoring Systems: A Shortened Story on Past, Current and Future Approaches How Cars Acquire Knowledge About the Driver's State. 22nd International Conference on Human-Computer Interaction with Mobile Devices and Services. doi:10.1145/3406324.3425896.
[5] Meteier, Q., Capallera, M., Ruffieux, S., Angelini, L., Abou Khaled, O., Mugellini, E., Widmer, M., & Sonderegger, A. (2021). Classification of Drivers' Workload Using Physiological Signals in Conditional Automation. Frontiers in Psychology, 12. doi:10.3389/fpsyg.2021.596038.
[6] Castro, I. D., Mercuri, M., Patel, A., Puers, R., Van Hoof, C., & Torfs, T. (2019). Physiological driver monitoring using capacitively coupled and radar sensors. Applied Sciences (Switzerland), 9(19), 3994. doi:10.3390/app9193994.
[7] Doudou, M. S., Bouabdallah, A., & Cherfaoui, V. (2018). A light on physiological sensors for efficient driver drowsiness detection system. Sensors & Transducers Journal, 224(8), 39-50.
[8] Darzi, A., Gaweesh, S. M., Ahmed, M. M., & Novak, D. (2018). Identifying the causes of drivers' hazardous states using driver characteristics, vehicle kinematics, and physiological measurements. Frontiers in Neuroscience, 12. doi:10.3389/fnins.2018.00568.
[9] Chowdhury, A., Shankaran, R., Kavakli, M., & Haque, M. M. (2018). Sensor Applications and Physiological Features in Drivers' Drowsiness Detection: A Review. IEEE Sensors Journal, 18(8), 3055–3067. doi:10.1109/JSEN.2018.2807245.
[10] Arakawa, T. (2021). A review of heartbeat detection systems for automotive applications. Sensors, 21(18), 6112. doi:10.3390/s21186112.
[11] Guo, K., Zhai, T., Purushothama, M. H., Dobre, A., Meah, S., Pashollari, E., Vaish, A., Dewilde, C., & Islam, M. N. (2022). Contactless Vital Sign Monitoring System for In-Vehicle Driver Monitoring Using a Near-Infrared Time-of-Flight Camera. Applied Sciences (Switzerland), 12(9). doi:10.3390/app12094416.
[12] Radhakrishnan, V., Merat, N., Louw, T., Gonçalves, R. C., Torrao, G., Lyu, W., Puente Guillen, P., & Lenné, M. G. (2022). Physiological indicators of driver workload during car-following scenarios and takeovers in highly automated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 87, 149–163. doi:10.1016/j.trf.2022.04.002.
[13] Persson, A., Jonasson, H., Fredriksson, I., Wiklund, U., & Ahlstrom, C. (2021). Heart Rate Variability for Classification of Alert Versus Sleep Deprived Drivers in Real Road Driving Conditions. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3316–3325. doi:10.1109/TITS.2020.2981941.
[14] Murugan, S., Selvaraj, J., & Sahayadhas, A. (2019). Analysis of Different Measures to Detect Driver States: A Review. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India. doi:10.1109/icscan.2019.8878844.
[15] Warnecke, J. M., Ganapathy, N., Koch, E., Dietzel, A., Flormann, M., Henze, R., & Deserno, T. M. (2022). Printed and Flexible ECG Electrodes Attached to the Steering Wheel for Continuous Health Monitoring during Driving. Sensors, 22(11), 4198. doi:10.3390/s22114198.
[16] Wang, C. S., Huang, Y. C., Wang, T. W., & Lee, S. H. (2019). Monitor a driver behavior by ECG measurement. International Journal of Information and Education Technology, 9(3), 184–188. doi:10.18178/ijiet.2019.9.3.1196.
[17] Balam, V. P., & Chinara, S. (2021). Development of single-channel electroencephalography signal analysis model for real-time drowsiness detection. Physical and Engineering Sciences in Medicine, 44(3), 713-726. doi:10.1007/s13246-021-01020-3.
[18] Balandong, R. P., Ahmad, R. F., Saad, M. N. M., & Malik, A. S. (2018). A review on EEG-based automatic sleepiness detection systems for driver. Ieee Access, 6, 22908-22919. doi:10.1109/ACCESS.2018.2811723.
[19] Jiao, Y., Deng, Y., Luo, Y., & Lu, B. L. (2020). Driver sleepiness detection from EEG and EOG signals using GAN and LSTM networks. Neurocomputing, 408, 100–111. doi:10.1016/j.neucom.2019.05.108.
[20] Bulagang, A. F., Weng, N. G., Mountstephens, J., & Teo, J. (2020). A review of recent approaches for emotion classification using electrocardiography and electrodermography signals. Informatics in Medicine Unlocked, 20, 100363. doi:10.1016/j.imu.2020.100363.
[21] Rahman, N.A.A., Mustafa, M., Sulaiman, N., Samad, R., Abdullah, N.R.H. (2022). EMG Signal Segmentation to Predict Driver's Vigilance State. Human-Centered Technology for a Better Tomorrow. Lecture Notes in Mechanical Engineering, Springer, Singapore. doi:10.1007/978-981-16-4115-2_3.
[22] Hayawi, A. A., & Waleed, J. (2019). Driver's drowsiness monitoring and alarming auto-system based on EOG signals. 2019 2nd International Conference on Engineering Technology and its Applications (IICETA). doi:10.1109/IICETA47481.2019.9013000.
[23] Bhardwaj, R., Parameswaran, S., & Balasubramanian, V. (2018). Comparison of Driver Fatigue Trend on simulator and on-road driving based on EMG correlation. 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS). doi:10.1109/iciinfs.2018.8721431.
[24] Rahman, H., Ahmed, M. U., & Begum, S. (2020). Non-Contact Physiological Parameters Extraction Using Facial Video Considering Illumination, Motion, Movement and Vibration. IEEE Transactions on Biomedical Engineering, 67(1), 88–98. doi:10.1109/TBME.2019.2908349.
[25] Amidei, A., Fallica, P. G., Conoci, S., & Pavan, P. (2021). Validating Photoplethysmography (PPG) data for driver drowsiness detection. 2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive), Bologna, Italy. doi:10.1109/metroautomotive50197.2021.9502865.
[26] Sikander, G., & Anwar, S. (2019). Driver Fatigue Detection Systems: A Review. IEEE Transactions on Intelligent Transportation Systems, 20(6), 2339–2352. doi:10.1109/TITS.2018.2868499.
[27] Arksey, H., & O'Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology: Theory and Practice, 8(1), 19–32. doi:10.1080/1364557032000119616.
[28] Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., ... Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine, 169(7), 467–473. doi:10.7326/m18-0850.
[29] Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan-a web and mobile app for systematic reviews. Systematic Reviews, 5(1). doi:10.1186/s13643-016-0384-4.
[30] van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. doi:10.1007/s11192-009-0146-3.
[31] Choi, G., Lim, K., & Pan, S. B. (2022). Driver Identification System Using 2D ECG and EMG Based on Multistream CNN for Intelligent Vehicle. IEEE Sensors Letters, 6(6), 6001904. doi:10.1109/LSENS.2022.3175787.
[32] Choi, G. H., Lim, K., & Pan, S. B. (2020). Driver Identification System Using Normalized Electrocardiogram Based on Adaptive Threshold Filter for Intelligent Vehicles. Sensors, 21(1), 202. doi:10.3390/s21010202.
[33] Inalegwu, O. C., Maliki, D., Agajo, J., Ajao, L. A., & Abu, A. D. (2018). (2018). Fingerprint Based Driver'S Identification System. I-Manager's Journal on Pattern Recognition, 5(2), 30. doi:10.26634/jpr.5.2.15730.
[34] Lin, X., Zhang, K., Cao, W., & Zhang, L. (2018). Driver Evaluation and Identification Based on Driving Behavior Data. 2018 5th International Conference on Information Science and Control Engineering (ICISCE). doi:10.1109/icisce.2018.00154.
[35] Ezzini, S., Berrada, I., & Ghogho, M. (2018). Who is behind the wheel? Driver identification and fingerprinting. Journal of Big Data, 5(1). doi:10.1186/s40537-018-0118-7.
[36] Thanda Swe, K., & Kyaw, T. (2020). Fingerprint RFID Recognition System. International Journal of Creative and Innovative Research, 3(1), 21–25.
[37] Santos, A., Medeiros, I., Resque, P., Rosário, D., Nogueira, M., Santos, A., Cerqueira, E., & Chowdhury, K. R. (2018). ECG-Based User Authentication and Identification Method on VANETs. Proceedings of the 10th Latin America Networking Conference. doi:10.1145/3277103.3277138.
[38] Zero, E., Bersani, C., & Sacile, R. (2021). EEG Real Time Analysis for Driver's Arm Movements Identification. Sensors & Transducers, 251(4), 11-18.
[39] Karumudi, B. R., Gist, P., Shahzad, M. Q., & Wagner, G. M. (2019). Biometric Authentication for Automobiles. Syracuse University, New York, United States.
[40] Rundo, F., & Battiato, S. (2022). Deep Learning Sobriety Monitoring System in Road-driven Car Driving Risk Assessment Pipeline. 2022 5th International Conference on Circuits, Systems and Simulation, ICCSS 2022, 166–172. doi:10.1109/ICCSS55260.2022.9802349.
[41] Vismaya, U. K., & Saritha, E. (2020). A Review on Driver Distraction Detection Methods. 2020 International Conference on Communication and Signal Processing (ICCSP). doi:10.1109/iccsp48568.2020.9182316.
[42] Ghandour, R., Neji, B., El-Rifaie, A. M., & Al Barakeh, Z. (2020). Driver Distraction and Stress Detection Systems: A Review. International Journal of Engineering and Applied Sciences (IJEAS), 7(4), 39–46. doi:10.31873/ijeas.7.04.10.
[43] Moslemi, N., Soryani, M., & Azmi, R. (2021). Computer vision-based recognition of driver distraction: A review. Concurrency and Computation: Practice and Experience, 33(24). doi:10.1002/cpe.6475.
[44] Zheng, W. L., Gao, K., Li, G., Liu, W., Liu, C., Liu, J. Q., Wang, G., & Lu, B. L. (2020). Vigilance Estimation Using a Wearable EOG Device in Real Driving Environment. IEEE Transactions on Intelligent Transportation Systems, 21(1), 170–184. doi:10.1109/TITS.2018.2889962.
[45] Song, K., Zhou, L., & Wang, H. (2021). Deep coupling recurrent auto-encoder with multi-modal EEG and EOG for vigilance estimation. Entropy, 23(10), 1316. doi:10.3390/e23101316.
[46] Gjoreski, M., Gams, M. Z., LuŠ¡trek, M., Genc, P., Garbas, J. U., & Hassan, T. (2020). Machine Learning and End-to-End Deep Learning for Monitoring Driver Distractions from Physiological and Visual Signals. IEEE Access, 8, 70590–70603. doi:10.1109/ACCESS.2020.2986810.
[47] Li, P., Li, Y., Yao, Y., Wu, C., Nie, B., & Li, S. E. (2022). Sensitivity of Electrodermal Activity Features for Driver Arousal Measurement in Cognitive Load: The Application in Automated Driving Systems. IEEE Transactions on Intelligent Transportation Systems, 23(9), 14954–14967. doi:10.1109/TITS.2021.3135266.
[48] Kang, Z., & Yang, X. (2020). Fatigue Driving Characteristics Analysis Based on Data of Driver Monitoring System. CICTP 2020. doi:10.1061/9780784482933.370.
[49] Laouz, H., Ayad, S., & Terrissa, L. S. (2020). Literature Review on Driver's Drowsiness and Fatigue Detection. 2020 International Conference on Intelligent Systems and Computer Vision (ISCV). doi:10.1109/iscv49265.2020.9204306.
[50] Gyulyev, N., Galkin, A., Schlosser, T., Capayova, S., Lobashov, O. (2022). Assessing Driver Fatigue during Urban Traffic Congestion Using ECG Method. Dynamics in Logistics. LDIC 2022. Lecture Notes in Logistics, Springer, Cham, Switzerland. doi:10.1007/978-3-031-05359-7_36.
[51] Low, I., Molesworth, B. R. C., & Burgess, M. (2021). The fatiguing effect of broadband noise: An EEG-based study. Accident Analysis & Prevention, 151, 105901. doi:10.1016/j.aap.2020.105901.
[52] Wang, H., Dragomir, A., Abbasi, N. I., Li, J., Thakor, N. V., & Bezerianos, A. (2018). A novel real-time driving fatigue detection system based on wireless dry EEG. Cognitive Neurodynamics, 12(4), 365–376. doi:10.1007/s11571-018-9481-5.
[53] Liu, L., Ji, Y., Gao, Y., Ping, Z., Kuang, L., Li, T., & Xu, W. (2021). A Novel Fatigue Driving State Recognition and Warning Method Based on EEG and EOG Signals. Journal of Healthcare Engineering, 2021. doi:10.1155/2021/7799793.
[54] Jiang, Y., Zhang, Y., Lin, C., Wu, D., & Lin, C. T. (2021). EEG-Based Driver Drowsiness Estimation Using an Online Multi-View and Transfer TSK Fuzzy System. IEEE Transactions on Intelligent Transportation Systems, 22(3), 1752–1764. doi:10.1109/TITS.2020.2973673.
[55] Hu, J., & Min, J. (2018). Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model. Cognitive Neurodynamics, 12(4), 431–440. doi:10.1007/s11571-018-9485-1.
[56] Sheykhivand, S., Rezaii, T. Y., Mousavi, Z., Meshgini, S., Makouei, S., Farzamnia, A., Danishvar, S., & Teo Tze Kin, K. (2022). Automatic Detection of Driver Fatigue Based on EEG Signals Using a Developed Deep Neural Network. Electronics (Switzerland), 11(14), 2169. doi:10.3390/electronics11142169.
[57] Nemcova, A., Svozilova, V., Bucsuhazy, K., Smisek, R., Mezl, M., Hesko, B., Belak, M., Bilik, M., Maxera, P., Seitl, M., Dominik, T., Semela, M., Sucha, M., & Kolar, R. (2021). Multimodal Features for Detection of Driver Stress and Fatigue: Review. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3214–3233. doi:10.1109/TITS.2020.2977762.
[58] Chaudhuri, A., & Routray, A. (2020). Driver Fatigue Detection through Chaotic Entropy Analysis of Cortical Sources Obtained from Scalp EEG Signals. IEEE Transactions on Intelligent Transportation Systems, 21(1), 185–198. doi:10.1109/TITS.2018.2890332.
[59] Ren, Z., Li, R., Chen, B., Zhang, H., Ma, Y., Wang, C., Lin, Y., & Zhang, Y. (2021). EEG-Based Driving Fatigue Detection Using a Two-Level Learning Hierarchy Radial Basis Function. Frontiers in Neurorobotics, 15. doi:10.3389/fnbot.2021.618408.
[60] Gaio, A., & Cugurullo, F. (2022). Cyclists and autonomous vehicles at odds: Can the Transport Oppression Cycle be Broken in the Era of Artificial Intelligence?. AI & Society, 1-15. doi:10.1007/s00146-022-01538-4.
[61] Dong, N., Li, Y., Gao, Z., Ip, W. H., & Yung, K. L. (2019). A WPCA-based method for detecting fatigue driving from EEG-based internet of vehicles system. IEEE Access, 7, 124702–124711. doi:10.1109/ACCESS.2019.2937914.
[62] Lu, J., Zheng, X., Tang, L., Zhang, T., Sheng, Q. Z., Wang, C., Jin, J., Yu, S., & Zhou, W. (2021). Can Steering Wheel Detect Your Driving Fatigue? IEEE Transactions on Vehicular Technology, 70(6), 5537–5550. doi:10.1109/tvt.2021.3072936.
[63] Wörle, J., Metz, B., Thiele, C., & Weller, G. (2019). Detecting sleep in drivers during highly automated driving: The potential of physiological parameters. IET Intelligent Transport Systems, 13(8), 1241–1248. doi:10.1049/iet-its.2018.5529.
[64] Buendia, R., Forcolin, F., Karlsson, J., Arne Sjöqvist, B., Anund, A., & Candefjord, S. (2019). Deriving heart rate variability indices from cardiac monitoring”An indicator of driver sleepiness. Traffic Injury Prevention, 20(3), 249–254. doi:10.1080/15389588.2018.1548766.
[65] Lu, K., Karlsson, J., Dahlman, A. S., Sjoqvist, B. A., & Candefjord, S. (2022). Detecting Driver Sleepiness Using Consumer Wearable Devices in Manual and Partial Automated Real-Road Driving. IEEE Transactions on Intelligent Transportation Systems, 23(5), 4801–4810. doi:10.1109/TITS.2021.3127944.
[66] Fujiwara, K., Abe, E., Kamata, K., Nakayama, C., Suzuki, Y., Yamakawa, T., Hiraoka, T., Kano, M., Sumi, Y., Masuda, F., Matsuo, M., & Kadotani, H. (2019). Heart Rate Variability-Based Driver Drowsiness Detection and Its Validation with EEG. IEEE Transactions on Biomedical Engineering, 66(6), 1769–1778. doi:10.1109/TBME.2018.2879346.
[67] Antunes, A. R., Meneses, M. V. P. R., Goncalves, J., & Braga, A. C. (2022). An Intelligent System to Detect Drowsiness at the Wheel. 2022 10th International Symposium on Digital Forensics and Security (ISDFS). doi:10.1109/isdfs55398.2022.9800836.
[68] Chen, H., & Chen, L. (2017). Support vector machine classification of drunk driving behaviour. International Journal of Environmental Research and Public Health, 14(1). doi:10.3390/ijerph14010108.
[69] Barua, S., Ahmed, M. U., Ahlström, C., & Begum, S. (2019). Automatic driver sleepiness detection using EEG, EOG and contextual information. Expert Systems with Applications, 115, 121–135. doi:10.1016/j.eswa.2018.07.054.
[70] Chen, J., Wang, H., & Hua, C. (2018). Assessment of driver drowsiness using electroencephalogram signals based on multiple functional brain networks. International Journal of Psychophysiology, 133, 120–130. doi:10.1016/j.ijpsycho.2018.07.476.
[71] Rachakonda, L., Mohanty, S. P., Kougianos, E., & Sayeed, M. A. (2020). Smart-Steering: An IoMT-Device to Monitor Blood Alcohol Concentration using Physiological Signals. 2020 IEEE International Conference on Consumer Electronics (ICCE). doi:10.1109/icce46568.2020.9043045.
[72] Subramaniyam, M., Kim, S. E., Min, S. N., Lee, H., Hong, S. H., & Park, S. J. (2018). Study of effects of blood alcohol consumption (BAC) level on drivers physiological behavior and driving performance under simulated environment. International Journal of Engineering and Technology (UAE), 7(2), 86–91. doi:10.14419/ijet.v7i2.8.10336.
[73] Xing, Q., Chen, Z., Zhang, Z., Wang, R., & Zhang, T. (2021). Modelling driving and charging behaviours of electric vehicles using a data-driven approach combined with behavioural economics theory. Journal of Cleaner Production, 324, 129243. doi:10.1016/j.jclepro.2021.129243.
[74] Sanguansri, P., Apiwong-Ngam, N., Ngamjarurojana, A., & Choopun, S. (2022). Development of non-invasive alcohol analyzer using Photoplethysmographytle. Journal of Physics: Conference Series, 2145(1). doi:10.1088/1742-6596/2145/1/012059.
[75] Wang, W. F., Yang, C. Y., & Wu, Y. F. (2018). SVM-based classification method to identify alcohol consumption using ECG and PPG monitoring. Personal and Ubiquitous Computing, 22(2), 275–287. doi:10.1007/s00779-017-1042-0.
[76] Evin, M., Taillard, J., De la Fuente, H. L., Galy, E., & Berthelon, C. (2018). Detection of functional state after alcohol consumption by classification and machine learning technics. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2237-2242. doi:10.1109/BIBM.2018.8621310.
[77] Chen, Y. Y., Lin, C. L., Lin, Y. C., & Zhao, C. (2018). Non-invasive detection of alcohol concentration based on photoplethysmogram signals. IET Image Processing, 12(2), 188–193. doi:10.1049/iet-ipr.2017.0625.
[78] Chhabra, G., Sapra, V., Sharma, R., Bansal, R., Joshi, M., & Joshi, K. (2021). Design Engineering Eye State Classification Based on EEG Signals. Design Engineering, 6, 2544–2551.
[79] Won Park, S., won Choi, J., Hyun Kim, T., Hun Seo, J., Gyu Jeong, M., In Lee, K., & Sung Kim, H. (2022). Prediction of Alcohol Consumption Based on Biosignals and Assessment of Driving Ability According to Alcohol Consumption. Journal of Biomedical Engineering Research, 43, 27–34. doi:10.9718/JBER.2022.43.1.27.
[80] Ye, Y., Ma, L., Liu, J., Zhang, Z., Gu, C., & Mao, J. F. (2022). A Novel Non-Contact Drunkenness Monitoring Technique Based on A 24-GHz Interferometric Radar System. 2022 IEEE MTT-S International Microwave Biomedical Conference, IMBioC 2022, 296–298. doi:10.1109/IMBioC52515.2022.9790121.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
