Modeling of Heat Transfer in Massive Concrete Foundations Using 3D-FDM
Downloads
Doi: 10.28991/CEJ-2023-09-10-05
Full Text: PDF
[2] Fan, J. S., Li, B. L., Liu, C., & Liu, Y. F. (2022). An efficient model for simulation of temperature field of steel-concrete composite beam bridges. Structures, 43, 1868–1880. doi:10.1016/j.istruc.2022.05.079.
[3] ACI 116R-00. (2005). Cement and Concrete Terminology. American Concrete Institute (ACI), Michigan, United States.
[4] da Amorim Coelho, N., Pedroso, L. J., da Silva Ríªgo, J. H., & Nepomuceno, A. A. (2014). Use of ANSYS for Thermal Analysis in Mass Concrete. Journal of Civil Engineering and Architecture, 8(7), 860–868. doi:10.17265/1934-7359/2014.07.007.
[5] Shawkey, M. A., Hassan, A. M., & Rashad, M. M. (2022). Numerical Analysis of Thermal Cracking Estimation of Mass Concrete With GGBS at an Early Age. Egyptian Journal of Chemistry, 65(5), 193–205. doi:10.21608/ejchem.2021.97424.4554.
[6] Mansour, D. M., & Ebid, A. M. (2023). Predicting thermal behavior of mass concrete elements using 3D finite difference model. Asian Journal of Civil Engineering. doi:10.1007/s42107-023-00864-2.
[7] Yikici, T. A., Sezer, H., & Chen, H. L. (2022). Modeling Thermal Behavior of Mass Concrete Structures at Early Age. Transportation Research Record, 2676(6), 536–548. doi:10.1177/03611981221075626.
[8] Bartojay, K. (2012). Thermal properties of reinforced structural mass concrete. Dam Safety Technology Development Program, Bureau of Reclamation, Denver, United States.
[9] Klemczak, B., & Š»mij, A. (2021). Insight into thermal stress distribution and required reinforcement reducing early-age cracking in mass foundation slabs. Materials, 14(3), 1–19. doi:10.3390/ma14030477.
[10] Xu, Z. H., Sun, D. W., & Xiao, H. (2012). Finite Element Analysis of Mass Concrete Temperature Crack Mechanism. Advanced Materials Research, 594–597, 713–716. doi:10.4028/www.scientific.net/amr.594-597.713.
[11] Zhang, T., Wang, H., Luo, Y., Yuan, Y., & Wang, W. (2023). Hydration Heat Control of Mass Concrete by Pipe Cooling Method and On-Site Monitoring-Based Influence Analysis of Temperature for a Steel Box Arch Bridge Construction. Materials, 16(7), 2925. doi:10.3390/ma16072925.
[12] Portland Cement Association. (1997). Portland cement, concrete, and heat of hydration. Concrete Technology Today, 18(2), 1-4.
[13] Kumar, K. A., Rajasekhar, K., & Sashidhar, C. (2022). Experimental Research on the Effects of Waste Foundry Sand on the Strength and Micro-Structural Properties of Concrete. Civil Engineering Journal, 8(10), 2172-2189. doi:10.28991/CEJ-2022-08-10-010.
[14] Onyelowe, K. C., Ebid, A. M., Ramani Sujatha, E., Fazel-Mojtahedi, F., Golaghaei-Darzi, A., Kontoni, D.-P. N., & Nooralddin-Othman, N. (2023). Extensive overview of soil constitutive relations and applications for geotechnical engineering problems. Heliyon, 9(3), e14465. doi:10.1016/j.heliyon.2023.e14465.
[15] ACI 207.R-05. (1997). Guide to Mass Concrete. American Concrete Institute (ACI), Michigan, United States.
[16] Rita, M., Fairbairn, E., Ribeiro, F., Andrade, H., & Barbosa, H. (2018). Optimization of Mass Concrete Construction Using a Twofold Parallel Genetic Algorithm. Applied Sciences, 8(3), 399. doi:10.3390/app8030399.
[17] Gajda, J. (2007). Mass concrete for buildings and bridges. Portland Cement Association, Washington, United States.
[18] Leon, G., & Chen, H. L. (2021). Thermal Analysis of Mass Concrete Containing Ground Granulated Blast Furnace Slag. CivilEng, 2(1), 254–270. doi:10.3390/civileng2010014.
[19] Marshall, A. L. (1972). The thermal properties of concrete. Building Science, 7(3), 167–174. doi:10.1016/0007-3628(72)90022-9.
[20] Aí¯t Alaí¯wa, A., Thiebaut, Y., Linger, L., & Boutillon, L. (2022). Operational implementation of concrete thermal modeling for construction projects. Structural Concrete, 23(6), 3754–3771. Portico. doi:10.1002/suco.202100725.
[21] Han, S. (2020). Assessment of curing schemes for effectively controlling thermal behavior of mass concrete foundation at early ages. Construction and Building Materials, 230, 117004. doi:10.1016/j.conbuildmat.2019.117004.
[22] Liu, X., Zhang, C., Chang, X., Zhou, W., Cheng, Y., & Duan, Y. (2015). Precise simulation analysis of the thermal field in mass concrete with a pipe water cooling system. Applied Thermal Engineering, 78, 449–459. doi:10.1016/j.applthermaleng.2014.12.050.
[23] Yang, J., Hu, Y., Zuo, Z., Jin, F., & Li, Q. (2012). Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes. Applied Thermal Engineering, 35(1), 145–156. doi:10.1016/j.applthermaleng.2011.10.016.
[24] Maruyama, I., & Lura, P. (2019). Properties of early-age concrete relevant to cracking in massive concrete. Cement and Concrete Research, 123, 105770. doi:10.1016/j.cemconres.2019.05.015.
[25] Chu, I., Lee, Y., Amin, M. N., Jang, B. S., & Kim, J. K. (2013). Application of a thermal stress device for the prediction of stresses due to hydration heat in mass concrete structure. Construction and Building Materials, 45, 192–198. doi:10.1016/j.conbuildmat.2013.03.056.
[26] Chen, H. L. (Roger), Mardmomen, S., & Leon, G. (2021). On-site measurement of heat of hydration of delivered mass concrete. Construction and Building Materials, 269. doi:10.1016/j.conbuildmat.2020.121246.
[27] Dam Safety Program Technology Development. (2017). Comparison of Thermal Property Models for Concrete, Geotechnical, and Structural Laboratory. U.S. Department of the Interior Bureau of Reclamation, Washington, United States.
[28] ACI 207. 2R-07. (2007). Report on Thermal and Volume Change Effects on Cracking of Mass Concrete. American Concrete Institute (ACI), Michigan, United States.
[29] Bobko, C. P., Zadeh, V. Z., & Seracino, R. (2015). Improved Schmidt Method for Predicting Temperature Development in Mass Concrete. ACI Materials Journal, 112(4), 579–586. doi:10.14359/51687454.
[30] Abeka, H., Adom-Asamoah, M., Osei Banahene, J., & Adinkrah-Appiah, K. (2018). Temperature prediction models in mass concrete state of the art literature review. 1st International Conference on Engineering, Science, Technology and Entrepreneurship (ESTE), 6-7 August, 2015, Kumasi, Ghana.
[31] Zhu, F., Chen, G., Zhang, F., & Li, Q. (2021). Numerical Simulation of Thermal Field in Mass Concrete with Pipe Water Cooling. Frontiers in Physics, 9. doi:10.3389/fphy.2021.716859.
[32] Huang, Y., Liu, G., Huang, S., Rao, R., & Hu, C. (2018). Experimental and finite element investigations on the temperature field of a massive bridge pier caused by the hydration heat of concrete. Construction and Building Materials, 192, 240–252. doi:10.1016/j.conbuildmat.2018.10.128.
[33] Do, T., Lawrence, A., Tia, M., & Bergin, M. (2013). Importance of insulation at the bottom of mass concrete placed on soil with high groundwater. Transportation Research Record, 2342(2342), 113–120. doi:10.3141/2342-14.
[34] Sargam, Y., Faytarouni, M., Riding, K., Wang, K., Jahren, C., & Shen, J. (2019). Predicting thermal performance of a mass concrete foundation – A field monitoring case study. Case Studies in Construction Materials, 11, 289–305. doi:10.1016/j.cscm.2019.e00289.
[35] Lin, Y., & Chen, H. L. (2015). Thermal analysis and adiabatic calorimetry for early-age concrete members. Journal of Thermal Analysis and Calorimetry, 122(2), 937–945. doi:10.1007/s10973-015-4843-2.
[36] Lawrence, A. M., Tia, M., Ferraro, C. C., & Bergin, M. (2012). Effect of Early Age Strength on Cracking in Mass Concrete Containing Different Supplementary Cementitious Materials: Experimental and Finite-Element Investigation. Journal of Materials in Civil Engineering, 24(4), 362–372. doi:10.1061/(asce)mt.1943-5533.0000389.
[37] Yikici, T. A., & Chen, H.-L. (Roger). (2015). Numerical Prediction Model for Temperature Development in Mass Concrete Structures. Transportation Research Record: Journal of the Transportation Research Board, 2508(1), 102–110. doi:10.3141/2508-13.
[38] Mahdi, I. M., Khalil, A. H., Mahdi, H. A., & Mansour, D. M. M. (2022). Decision support system for optimal bridge' maintenance. International Journal of Construction Management, 22(3), 342–356. doi:10.1080/15623599.2019.1623991.
[39] Mohamed Mansour, D. M., Moustafa, I. M., Khalil, A. H., & Mahdi, H. A. (2019). An assessment model for identifying maintenance priorities strategy for bridges. Ain Shams Engineering Journal, 10(4), 695–704. doi:10.1016/j.asej.2019.06.003.
[40] The National Research Centre for Housing and Building. (2018). The Egyptian Code for Design and Construction of Reinforced Concrete Structures 203-2018. The National Research Centre for Housing and Building, Cairo, Egypt.
[41] Bobko, C. P., Seracino, R., Zia, P., Edwards, A., & Hall, M. (2014). Crack Free Mass Concrete Footings on Bridges in Coastal Environments. North Carolina State University, Raleigh, United States.
[42] Yeon, J. H., Choi, S., & Won, M. C. (2013). In situ measurement of coefficient of thermal expansion in hardening concrete and its effect on thermal stress development. Construction and Building Materials, 38, 306–315. doi:10.1016/j.conbuildmat.2012.07.111.
[43] Lee, M. H., Chae, Y. S., Khil, B. S., & Yun, H. D. (2014). Influence of Casting Temperature on the Heat of Hydration in Mass Concrete Foundation with Ternary Cements. Applied Mechanics and Materials, 525, 478–481. doi:10.4028/www.scientific.net/amm.525.478.
[44] Asadi, I., Shafigh, P., Abu Hassan, Z. F. Bin, & Mahyuddin, N. B. (2018). Thermal conductivity of concrete – A review. Journal of Building Engineering, 20, 81–93. doi:10.1016/j.jobe.2018.07.002.
[45] ACI 122R-02. (2002). Guide to Thermal Prosperities of Concrete and Masonry Systems. American Concrete Institute (ACI), Michigan, United States.
[46] Livesey, P., Donnelly, A., & Tomlinson, C. (1991). Measurement of the heat of hydration of cement. Cement and Concrete Composites, 13(3), 177–185. doi:10.1016/0958-9465(91)90018-D.
[47] Kuriakose, B., Rao, B. N., Dodagoudar, G. R., & Venkatachalapathy, V. (2015). Modelling of heat of hydration for thick concrete constructions - A note. Journal of Structural Engineering (India), 42(4), 348–357.
[48] Ebid, A. M., Onyelowe, K. C., Kontoni, D.-P. N., Gallardo, A. Q., & Hanandeh, S. (2023). Heat and mass transfer in different concrete structures: a study of self-compacting concrete and geopolymer concrete. International Journal of Low-Carbon Technologies, 18, 404–411. doi:10.1093/ijlct/ctad022.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
