Experimental Study on Ultimate Strength of Steel Tube Column Filled with Reactive Powder Concrete
Abstract
Doi: 10.28991/CEJ-2023-09-06-04
Full Text: PDF
Keywords
References
Jiang, Y., Silva, A., Macedo, L., Castro, J. M., Monteiro, R., & Chan, T. M. (2019). Concentrated-plasticity modelling of circular concrete-filled steel tubular members under flexure. Structures, 21, 156–166. doi:10.1016/j.istruc.2019.01.023.
Schneider, S. P., Kramer, D. R., & Sarkkinen, D. L. (2004). The design and construction of concrete-filled steel tube column frames. 13th World Conference on Earthquake Engineering, 1-6 August, 2004, Vancouver, Canada.
Uenaka, K., Kitoh, H., & Sonoda, K. (2010). Concrete filled double skin circular stub columns under compression. Thin-Walled Structures, 48(1), 19–24. doi:10.1016/j.tws.2009.08.001.
Yang, Y. F., & Han, L. H. (2012). Concrete filled steel tube (CFST) columns subjected to concentrically partial compression. Thin-Walled Structures, 50(1), 147–156. doi:10.1016/j.tws.2011.09.007.
Liao, F. Y., Hou, C., Zhang, W. J., & Ren, J. (2019). Experimental investigation on sea sand concrete-filled stainless steel tubular stub columns. Journal of Constructional Steel Research, 155, 46–61. doi:10.1016/j.jcsr.2018.12.009.
Almamoori, A. H. N., Naser, F. H., & Dhahir, M. K. (2020). Effect of section shape on the behaviour of thin walled steel columns filled with light weight aggregate concrete: Experimental investigation. Case Studies in Construction Materials, 13. doi:10.1016/j.cscm.2020.e00356.
Han, L. H., Liu, W., & Yang, Y. F. (2008). Behaviour of concrete-filled steel tubular stub columns subjected to axially local compression. Journal of Constructional Steel Research, 64(4), 377–387. doi:10.1016/j.jcsr.2007.10.002.
Yang, Y. F., & Han, L. H. (2011). Behaviour of concrete filled steel tubular (CFST) stub columns under eccentric partial compression. Thin-Walled Structures, 49(2), 379–395. doi:10.1016/j.tws.2010.09.024.
Hassooni, A. N., & Al-Zaidee, S. R. (2022). Rehabilitation of Composite Column Subjected to Axial Load. Civil Engineering Journal, 8(3), 595-611. doi:10.28991/CEJ-2022-08-03-013.
Muteb, H. H., & Hasan, D. M. (2020). Ultra-high-performance concrete using local materials and production methods. IOP Conference Series: Materials Science and Engineering, 870, 012100. doi:10.1088/1757-899X/870/1/012100.
Luo, H., Wang, W., Shen, L., & Wang, G. (2017). Stress-strain model for reactive powder concrete confined by steel tube. Journal of Engineering Science and Technology Review, 10(2), 122–131. doi:10.25103/jestr.102.15.
Hoang, A. Le, Fehling, E., Lai, B., Thai, D. K., & Chau, N. Van. (2019). Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube. Engineering Structures, 187, 457–477. doi:10.1016/j.engstruct.2019.02.063.
Mi, Y., Liu, Z., Wang, W., Yang, Y., & Wu, C. (2020). Experimental study on residual axial bearing capacity of UHPFRC-filled steel tubes after lateral impact loading. Structures, 26, 549–561. doi:10.1016/j.istruc.2020.04.032.
ASTM C150/C150M-22. (2022). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-22.
Iraqi Specifications No.45. (1984). Aggregates of Natural Resources used for Concrete and Construction. Iraqi Specifications, Baghdad, Iraq.
ANSI/AISC 360-22. (2022). Specification for Structural Steel Buildings. American Institute of Steel Construction, Illinois, United States.
Eurocode 4. (2014). Design of composite steel and concrete structures. European Committee for Standardization, Brussels, Belgium. doi:10.1007/978-3-642-41714-6_51757.
ACI 318. (1994). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI), Michigan, United States.
DOI: 10.28991/CEJ-2023-09-06-04
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Bahaa Al-Abbas, Zainab Abdul Rasoul, Dhafer Hasan, Sajjad Emad Rasheed
This work is licensed under a Creative Commons Attribution 4.0 International License.