Deterministic Seismic Hazard Analysis to Determine Liquefaction Potential Due to Earthquake

K. A. Hanindya, Lalu Makrup, . Widodo, R. Paulus

Abstract


The great rocking of building structures and the occurrence of liquefaction in water-saturated soil on river banks are generally caused by earthquake shaking. The waves generated by the earthquake are the main cause of the shaking. In order to show the effect of ground motion earthquake shaking on the response of structures and liquefaction processes, it is necessary to analyze the structure and liquefaction as well as the time history of artificial earthquake ground motions. An artificial time history for liquefaction analysis can be developed based on spectral matching to the target spectrum generated by a deterministic seismic hazard analysis. Therefore, the time history recovered from the analysis can be said to be derived from a deterministic procedure. The analysis of liquefaction with time history aims to see the potential for liquefaction in the Palu region of Central Sulawesi by developing the time history of the bedrock. The time history of the bedrock is then spread over the ground surface. The propagation of time-historical waves to the ground surface can cause liquefaction events in the soil layer. It was found that liquefaction occurred in the Palu region, especially in the Anutapura Hospital building. No other liquefaction potential analysis studies were found in the region.

 

Doi: 10.28991/CEJ-2023-09-05-012

Full Text: PDF


Keywords


Ground Motion; Time History; Seismic Hazard; Liquefaction Analysis.

References


Pratiwi, D. A. W. W., Makrup, L., & Setiawan, I. (2022). The Structural Dynamic Evaluation of Wadaslintang Dam to the Earthquake Acceleration Based on Indonesian Seismic Code 2019. American Journal of Civil Engineering, 10(3), 125-134. doi:10.11648/j.ajce.20221003.15.

Marzuko, A., Makrup, L., Abdurrazak, M. R. (2022). The Effect of the Soil Response to the Change of the Frequency Characteristic of the Earthquake Ground Motions, American Journal of Civil Engineering. 10(4), 145-152. doi:10.11648/j.ajce.20221004.11.

Erlangga, W., Makrup, L., Mushthofa, M., & Suharyatmo, D. (2022) Evaluation of Law Faculty Building of Islamic University of Indonesia based on earthquake acceleration was determined with probabilistic concept. Teknisia, 27, 1. (In Indonesian).

Nikolaou, A. S. (1998). A GIS platform for earthquake risk analysis. Ph.D. Thesis, State University of New York, Buffalo, United States.

Makrup, L. (2017). Change the frequency characteristics of the earthquake acceleration wave by Fourier analysis. International Journal of Civil Engineering and Technology, 8(12), 1045–1055.

Saputra, E., Nugraheni, F., Pawirodikromo, W., & Makrup, L. (2021). Comparison of Soil Surface Seismic Hazard Maps as Basic Disaster Mitigation Based Spatial Planning in Riau Province. Media Komunikasi Teknik Sipil, 27(2), 250–259. doi:10.14710/mkts.v27i2.36902.

Carlson, C. P., Zekkos, D., & McCormick, J. P. (2014). Impact of time and frequency domain ground motion modification on the response of a SDOF system. Earthquake and Structures, 7(6), 1283–1301. doi:10.12989/eas.2014.7.6.1283.

Ergun, M., & Ates, S. (2013). Selecting and scaling ground motion time histories according to Eurocode 8 and ASCE 7-05. Earthquake and Structures, 5(2), 129–142. doi:10.12989/eas.2013.5.2.129.

Wood, R. L., & Hutchinson, T. C. (2012). Effects of ground motion scaling on nonlinear higher mode building response. Earthquake and Structures, 3(6), 869–887. doi:10.12989/eas.2012.3.6.869.

Bayati, Z., & Soltani, M. (2016). Ground motion selection and scaling for seismic design of RC frames against collapse. Earthquake and Structures, 11(3), 445–459. doi:10.12989/eas.2016.11.3.445.

Pavel, F., & Vacareanu, R. (2016). Scaling of ground motions from Vrancea (Romania) earthquakes. Earthquakes and Structures, 11(3), 505–516. doi:10.12989/eas.2016.11.3.505.

Makrup, L., & Jamal, A.U. (2016). The Earthquake Ground Motion and Response Spectra Design for Sleman, Yogyakarta, Indonesia with Probabilistic Seismic Hazard Analysis and Spectral Matching in Time Domain. American Journal of Civil Engineering, 4(6), 298. doi:10.11648/j.ajce.20160406.15.

Makrup, L. (2017). Generating Design Ground Motion by Probabilistic Seismic Hazard Analysis and Code. Electronic journal of Geotechnical Engineering, 22, 1567-1586.

Makrup, L., & Muntafi, Y. (2016). Artificial ground motion for the cities of Semarang and solo Indonesia generated based on probabilistic seismic hazard analysis and spectral matching. Electronic Journal of Geotechnical Engineering, 21(21), 6587–6602.

Subedi, M., & Acharya, I. P. (2022). Liquefaction hazard assessment and ground failure probability analysis in the Kathmandu Valley of Nepal. Geoenvironmental Disasters, 9(1). doi:10.1186/s40677-021-00203-0.

Kang, S. Y., Kim, K. H., Gihm, Y. S., & Kim, B. (2022). Soil liquefaction potential assessment using ambient noise: A case study in Pohang, Korea. Frontiers in Earth Science, 10, 2022. doi:10.3389/feart.2022.1029996.

Nurlita Fitri, S., & Wahyu Pramana, I. M. (2022). Liquefaction Assessment Based on Grain Size and CPT Analysis for Birobuli Area, South Palu. Teknisia, 27(2), 95–102. doi:10.20885/teknisia.vol27.iss2.art3.

Bojadjieva, J., Sheshov, V., Edip, K., & Kitanovski, T. (2022). Verification of a System for Sustainable Research on Earthquake-Induced Soil Liquefaction in 1-g Environments. Geosciences (Switzerland), 12(10), 363. doi:10.3390/geosciences12100363.

Ahmad, M., Tang, X. W., Ahmad, F., & Jamal, A. (2018). Assessment of soil liquefaction potential in Kamra, Pakistan. Sustainability (Switzerland), 10(11), 4223. doi:10.3390/su10114223.

Kim, J., Kazama, M., & Kawai, T. (2021). Evaluation of post-liquefaction volumetric strain of reconstituted samples based on soil compressibility. Soils and Foundations, 61(6), 1555–1564. doi:10.1016/j.sandf.2021.09.002.

Sukkarak, R., Tanapalungkorn, W., Likitlersuang, S., & Ueda, K. (2021). Liquefaction analysis of sandy soil during strong earthquake in Northern Thailand. Soils and Foundations, 61(5), 1302–1318. doi:10.1016/j.sandf.2021.07.003.

Kamura, A., Kurihara, G., Mori, T., Kazama, M., Kwon, Y., Kim, J., & Han, J. T. (2021). Exploring the possibility of assessing the damage degree of liquefaction based only on seismic records by artificial neural networks. Soils and Foundations, 61(3), 658–674. doi:10.1016/j.sandf.2021.01.014.

Jalil, A., Fathani, T. F., Satyarno, I., & Wilopo, W. (2021). Liquefaction in Palu: the cause of massive mudflows. Geoenvironmental Disasters, 8(1). doi:10.1186/s40677-021-00194-y.

Karastanev, D., & Tchakalova, B. (2021). Liquefaction potential assessment of saturated loess. Geologica Balcanica, 50(1), 37–44. doi:10.52321/GeolBalc.50.1.37.

Uyanık, O. (2020). Soil liquefaction analysis based on soil and earthquake parameters. Journal of Applied Geophysics, 176, 104004. doi:10.1016/j.jappgeo.2020.104004.

Hashemi, M., & Nikudel, M. R. (2016). Application of dynamic cone penetrometer test for assessment of liquefaction potential. Engineering Geology, 208, 51-62. doi:10.1016/j.enggeo.2016.04.013.

Agung, P. A. M., Ahmad, M. A., & Hasan, M. F. R. (2022). Probability Liquefaction On Silty Sand Layer On Central Jakarta. International Journal of Integrated Engineering, 14(9), 48-55.

Lees, J. J., Ballagh, R. H., Orense, R. P., & van Ballegooy, S. (2015). CPT-based analysis of liquefaction and re-liquefaction following the Canterbury earthquake sequence. Soil Dynamics and Earthquake Engineering, 79, 304–314. doi:10.1016/j.soildyn.2015.02.004.

Muntohar, A. S. (2014). Research on earthquake induced liquefaction in Padang City and Yogyakarta area. Jurnal Geoteknik HATTI IX, 1, 0853-4810.

Tatsuoka, F., Iwasaki, T., Tokida, K.-I., Yasuda, S., Hirose, M., Imai, T., & Kon-No, M. (1980). Standard Penetration Tests and Soil Liquefaction Potential Evaluation. Soils and Foundations, 20(4), 95–111. doi:10.3208/sandf1972.20.4_95.

Seed, H. B., & Idriss, I. M. (1971). Simplified Procedure for Evaluating Soil Liquefaction Potential. Journal of the Soil Mechanics and Foundations Division, 97(9), 1249–1273. doi:10.1061/jsfeaq.0001662.

Sadigh, K., Chang, C.-Y., Egan, J. A., Makdisi, F., & Youngs, R. R. (1997). Attenuation Relationships for Shallow Crustal Earthquakes Based on California Strong Motion Data. Seismological Research Letters, 68(1), 180–189. doi:10.1785/gssrl.68.1.180.

Boulanger, R. W., & Idriss, I. M. (2007). Evaluation of Cyclic Softening in Silts and Clays. Journal of Geotechnical and Geoenvironmental Engineering, 133(6), 641–652. doi:10.1061/(asce)1090-0241(2007)133:6(641).

Kanno, T., Narita, A., Morikawa, N., Fujiwara, H., & Fukushima, Y. (2006). A New Attenuation Relation for Strong Ground Motion in Japan Based on Recorded Data. Bulletin of the Seismological Society of America, 96(3), 879–897. doi:10.1785/0120050138.

Oshima, T., Yamamoto, T., Ohto, K., Goto, M., Nakashio, F., & Furusaki, S. (2001). A calixarene-based phosphoric acid extractant for rare earth separation. Solvent Extraction Research and Development, 2001(8), 194-204.

Imai, T., & Tonoughi, K. (2021). Correlation of N value with S-wave velocity and shear modulus. Penetration Testing, 67-72. Routledge, Taylor & Francis, New York, United States.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-05-012

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Lalu Makrup

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message