Evaluation of Factors Affecting the Performance of Fiber-Reinforced Subgrade Soil Characteristics Under Cyclic Loading
Vol. 9 No. 8 (2023): August
Research Articles
Downloads
Doi: 10.28991/CEJ-2023-09-08-015
Full Text: PDF
Aneke, F. I., Hanandeh, S., & Kalumba, D. (2023). Evaluation of Factors Affecting the Performance of Fiber-Reinforced Subgrade Soil Characteristics Under Cyclic Loading. Civil Engineering Journal, 9(8), 2046–2061. https://doi.org/10.28991/CEJ-2023-09-08-015
[1] Ikechukwu, A. F., Hassan, M. M., & Moubarak, A. (2021). Resilient modulus and microstructure of unsaturated expansive subgrade stabilized with activated fly ash. International Journal of Geotechnical Engineering, 15(8), 915–938. doi:10.1080/19386362.2019.1656919.
[2] Ikechukwu, A. F., & Chibuzor, O. K. (2022). Improving resilient modulus and cyclic crack restriction of preloaded expansive subgrade treated with nano-geopolymer binder. Arabian Journal of Geosciences, 15(15), 1340. doi:10.1007/s12517-022-10629-x.
[3] Frank, A. I. (2015). Geotechnical properties of marginal highway backfill stabilized with activated fly ash. Master Thesis, University of Johannesburg, Johannesburg, South Africa.
[4] TANG, L. S., WU, Y. P., ZHAO, Z. L., ZHAO, L., & CHEN, H. K. (2019). Dynamic Stress Response Characteristics within Soil and Influence of pH under Cyclic Loading. Journal of Yangtze River Scientific Research Institute, 36(12), 78. doi:10.11988/ckyyb.20180622. (In Chinese).
[5] Ikechukwu, A. F., & Hassan, M. M. (2022). Assessing the Extent of Pavement Deterioration Caused by Subgrade Volumetric Movement Through Moisture Infiltration. International Journal of Pavement Research and Technology, 15(3), 676–692. doi:10.1007/s42947-021-00044-y.
[6] Aneke, F. I. (2018). Behaviour Of Unsaturated Soils for Road Pavement Structure Under Cyclic Loading. Ph.D. Thesis, Central University of Technology, Free State, Bloemfontein, South Africa.
[7] Ikechukwu, A. F., & Mostafa, M. M. H. (2020). Performance assessment of pavement structure using dynamics cone penetrometer (DCP). International Journal of Pavement Research and Technology, 13(5), 466–476. doi:10.1007/s42947-020-0249-z.
[8] Ikechukwu, A. F., & Mostafa, M. M. H. (2021). Assessing the coupling effects of nanosized fly ash and precompression stress towards mitigating subgrade cracks mobilised by traffic loading. Nanotechnology for Environmental Engineering, 6(3), 63. doi:10.1007/s41204-021-00157-6.
[9] Aneke, F. I., Mostafa, M. M. H., & El Kamash, W. (2021). Pre-compression and capillarity effect of treated expansive subgrade subjected to compressive and tensile loadings. Case Studies in Construction Materials, 15, e00575. doi:10.1016/j.cscm.2021.e00575.
[10] Aneke, F. I., & Onyelowe, K. C. (2022). Applications of preloading pressure on expansive subgrade treated with nano-geopolymer binder for cyclic crack resistance. Nanotechnology for Environmental Engineering, 7(3), 593–607. doi:10.1007/s41204-022-00250-4.
[11] Lu, Z., Fang, R., Yao, H., Hu, Z., & Liu, J. (2018). Evaluation and Analysis of the Traffic Load–Induced Settlement of Roads on Soft Subsoils with Low Embankments. International Journal of Geomechanics, 18(6), 41–56. doi:10.1061/(asce)gm.1943-5622.0001123.
[12] Ikechukwu, A. F., Hassan, M. M., & Moubarak, A. (2021). Swelling stress effects on shear strength resistance of subgrades. International Journal of Geotechnical Engineering, 15(8), 939–949. doi:10.1080/19386362.2019.1656445.
[13] Tang, L. S., Chen, H. K., Sun, Y. L., Zhang, Q. H., & Liao, H. R. (2018). Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests. Geomechanics and Engineering, 16(2), 113–124. doi:10.12989/gae.2018.16.2.113.
[14] Guo, L., Wang, J., Cai, Y., Liu, H., Gao, Y., & Sun, H. (2013). Undrained deformation behavior of saturated soft clay under long-term cyclic loading. Soil Dynamics and Earthquake Engineering, 50(1), 28–37. doi:10.1016/j.soildyn.2013.01.029.
[15] Cai, Y., Sun, Q., Guo, L., Juang, C. H., & Wang, J. (2015). Permanent deformation characteristics of saturated sand under cyclic loading. Canadian Geotechnical Journal, 52(6), 795–807. doi:10.1139/cgj-2014-0341.
[16] Liu, X., Zhang, X., & Wang, X. (2021). Resilient modulus and cumulative plastic strain of frozen silty clay under dynamic aircraft loading. SN Applied Sciences, 3(10), 805. doi:10.1007/s42452-021-04792-1.
[17] Qiu, C., Cao, D., Wang, Z., & Xu, G. (2016). Permanent deformation characteristics of saturated sand reinforced with horizontal-vertical inclusions under cyclic loading. Electronic Journal of Geotechnical Engineering, 21(21), 6545–6554.
[18] Das, N., & Singh, S. K. (2019). Geotechnical behaviour of lateritic soil reinforced with brown waste and synthetic fibre. International Journal of Geotechnical Engineering, 13(3), 287–297. doi:10.1080/19386362.2017.1344002.
[19] Moghal, A. A. B., Basha, B. M., & Ashfaq, M. (2019). Probabilistic Study on the Geotechnical Behavior of Fiber Reinforced Soil. Frontiers in Geotechnical Engineering. Developments in Geotechnical Engineering. Springer, Singapore. doi:10.1007/978-981-13-5871-5_17.
[20] Ibraim, E., Camenen, J. F., Diambra, A., Kairelis, K., Visockaite, L., & Consoli, N. C. (2018). Energy efficiency of fibre reinforced soil formation at small element scale: Laboratory and numerical investigation. Geotextiles and Geomembranes, 46(4), 497–510. doi:10.1016/j.geotexmem.2018.04.008.
[21] Seed, H. B., & Idriss, I. M. (1970). Soil moduli and damping factors for dynamic response analysis. Journal of Terramechanics, 8(3), 109. doi:10.1016/0022-4898(72)90110-3.
[22] AASHTO. (1962). The AASHTO road test, report 5-pavement research. Pavement Research. Accession No. 01417540, Highway Research Board, American Association of State Highway and Transportation Officials (AASHTO), Washington DC, United States.
[23] Brown, S. F., & Hyde, A. F. L. (1975). Significance of cyclic confining stress in repeated-load triaxial testing of granular material. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(9), A102. doi:10.1016/0148-9062(76)90013-9.
[24] Ling, J. M., Wang, W., & Wu, H. B. (2002). Residual deformation of saturated clay subgrade under vehicle load. Tongji Daxue Xuebao/Journal of Tongji University, 30(11), 1315–1320. doi:10.3321/j.issn:0253-374X.2002.11.007.
[25] Mazari, M., Navarro, E., Abdallah, I., & Nazarian, S. (2014). Comparison of numerical and experimental responses of pavement systems using various resilient modulus models. Soils and Foundations, 54(1), 36–44. doi:10.1016/j.sandf.2013.12.004.
[26] Yang, M., Men, Y. M., Cao, L., & Yuan, L. Q. (2016). Numerical analysis of stress in soil due to subway moving loads in ground fissure area. Chinese Journal of Underground Space and Engineering, 12 (06), 1545–1552.
[27] Thevakumar, K., Indraratna, B., Ferreira, F. B., Carter, J., & Rujikiatkamjorn, C. (2021). The influence of cyclic loading on the response of soft subgrade soil in relation to heavy haul railways. Transportation Geotechnics, 29, 100571. doi:10.1016/j.trgeo.2021.100571.
[28] ASTM D1140-17. (2017). Standard Test Methods for Determining the Amount of Material Finer than 75-μm (No. 200) Sieve in Soils by Washing. ASTM International, Pennsylvania, United States. doi:10.1520/D1140-17.
[29] ASTM D4318-17e1. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.
[30] ASTM D3822/D3822M-14. (2020). Standard Test Method for Tensile Properties of Single Textile Fibres. ASTM International, Pennsylvania, United States. doi:10.1520/D3822_D3822M-14R20.
[31] ASTM D698-12. (2007). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12400 ft- lbf/ft3 (600 kN- m/ m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.
[32] Bledzki, A. K., Mamun, A. A., Lucka-Gabor, M., & Gutowski, V. S. (2008). The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters, 2(6), 413–422. doi:10.3144/expresspolymlett.2008.50.
[33] AASHTO T307-99. (2003). Standard method of test for determining the resilient modulus of soils and aggregate materials. American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.
[34] Vucetic, M., & Mortezaie, A. (2015). Cyclic secant shear modulus versus pore water pressure in sands at small cyclic strains. Soil Dynamics and Earthquake Engineering, 70, 60–72. doi:10.1016/j.soildyn.2014.12.001.
[35] Salour, F., Erlingsson, S., & Zapata, C. E. (2013). Modelling resilient modulus seasonal variation of Silty sand subgrade soils with matric suction control. Canadian Geotechnical Journal, 51(12), 1413–1422. doi:10.1139/cgj-2013-0484.
[36] Yaghoubi, E., Yaghoubi, M., Guerrieri, M., & Sudarsanan, N. (2021). Improving expansive clay subgrades using recycled glass: Resilient modulus characteristics and pavement performance. Construction and Building Materials, 302, 124384. doi:10.1016/j.conbuildmat.2021.124384.
[37] Gaspard, K., Zhang, Z., Gautreau, G., Hanifa, K., Zapata, C. E., & Abufarsakh, M. (2019). Modeling the Resilient Modulus Variation of in Situ Soils due to Seasonal Moisture Content Variations. Advances in Civil Engineering, 2019. doi:10.1155/2019/1793601.
[38] George, V., & Kumar, A. (2018). Studies on modulus of resilience using cyclic tri-axial test and correlations to PFWD, DCP, and CBR. International Journal of Pavement Engineering, 19(11), 976–985. doi:10.1080/10298436.2016.1230428.
[39] Al Adili, A., Azzam, R., Spagnoli, G., & Schrader, J. (2012). Strength of soil reinforced with fiber materials (Papyrus). Soil Mechanics and Foundation Engineering, 48(6), 241–247. doi:10.1007/s11204-012-9154-z.
[40] GЂuchowski, A., & Sas, W. (2020). Long-term cyclic loading impact on the creep deformation mechanism in cohesive materials. Materials, 13(17), 3907. doi:10.3390/ma13173907.
[41] An, R., Kong, L., Shi, W., & Zhang, X. (2022). Stiffness decay characteristics and disturbance effect evaluation of structured clay based on in-situ tests. Soils and Foundations, 62(5), 101184. doi:10.1016/j.sandf.2022.101184.
[42] Kennedy, S., Clarke, S., & Shepley, P. (2022). The Effect of Stress Level on the Resilient Modulus of Non-Engineered Mudrock Backfill Materials. CivilEng, 3(3), 630–642. doi:10.3390/civileng3030037.
[43] Xie, L., Zhao, Z., & Lei, Y. (2019). Accumulated Plastic Strain of Silty Clay under Subway Moving Loads. Journal of Shenyang Jianzhu University (Natural Science), 35(1), 91–100. doi:10.11717/j.issn:2095-1922.2019.01.11.
[44] Sandjak, K., & Tiliouine, B. (2012). Experimental evaluation of non-linear resilient deformations of some algerian aggregates under cyclic loading. Arabian Journal for Science and Engineering, 39(3), 1507–1516. doi:10.1007/s13369-013-0737-4.
[45] Tang, L., Zhao, Z., Chen, H., Wu, Y., & Zeng, Y. (2019). Dynamic stress accumulation model of granite residual soil under cyclic loading based on small-size creep tests. Journal of Central South University, 26(3), 728–742. doi:10.1007/s11771-019-4043-5.
[46] Bian, X., Jiang, J., Jin, W., Sun, D., Li, W., & Li, X. (2016). Cyclic and Postcyclic Triaxial Testing of Ballast and Subballast. Journal of Materials in Civil Engineering, 28(7), 4016032. doi:10.1061/(asce)mt.1943-5533.0001523.
[47] Han, Z., Vanapalli, S. K., Ren, J. ping, & Zou, W. lie. (2018). Characterizing cyclic and static moduli and strength of compacted pavement subgrade soils considering moisture variation. Soils and Foundations, 58(5), 1187–1199. doi:10.1016/j.sandf.2018.06.003.
[48] Estabragh, A. R., Moghadas, M., Moradi, M., & Javadi, A. A. (2017). Consolidation behavior of an unsaturated silty soil during drying and wetting. Soils and Foundations, 57(2), 277–287. doi:10.1016/j.sandf.2017.03.005.
[49] Kumar, S. S., Krishna, A. M., & Dey, A. (2017). Evaluation of dynamic properties of sandy soil at high cyclic strains. Soil Dynamics and Earthquake Engineering, 99, 157–167. doi:10.1016/j.soildyn.2017.05.016.
[50] Soliman, H., & Shalaby, A. (2015). Permanent deformation behavior of unbound granular base materials with varying moisture and fines content. Transportation Geotechnics, 4, 1–12. doi:10.1016/j.trgeo.2015.06.001.
[51] Madhavi Latha., G., & Nandhi Varman., A. M. (2016). Static and cyclic load response of reinforced sand through large triaxial tests. Japanese Geotechnical Society Special Publication, 2(68), 2342–2346. doi:10.3208/jgssp.igs-39.
[52] Ying, M., Liu, F., Wang, J., Wang, C., & Li, M. (2021). Coupling effects of particle shape and cyclic shear history on shear properties of coarse-grained soil–geogrid interface. Transportation Geotechnics, 27, 100504. doi:10.1016/j.trgeo.2020.100504.
[53] Olgun, M. (2013). Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynthetics International, 20(4), 263–275. doi:10.1680/gein.13.00016.
[54] Gao, L., Zhou, Q., Yu, X., Wu, K., & Mahfouz, A. H. (2017). Experimental study on the unconfined compressive strength of carbon fiber reinforced clay soil. Marine Georesources & Geotechnology, 35(1), 143–148. doi:10.1080/1064119X.2015.1102184.
[55] Tang, C. S., Li, J., Wang, D. Y., & Shi, B. (2016). Investigation on the interfacial mechanical behavior of wave-shaped fiber reinforced soil by pullout test. Geotextiles and Geomembranes, 44(6), 872–883. doi:10.1016/j.geotexmem.2016.05.001.
[2] Ikechukwu, A. F., & Chibuzor, O. K. (2022). Improving resilient modulus and cyclic crack restriction of preloaded expansive subgrade treated with nano-geopolymer binder. Arabian Journal of Geosciences, 15(15), 1340. doi:10.1007/s12517-022-10629-x.
[3] Frank, A. I. (2015). Geotechnical properties of marginal highway backfill stabilized with activated fly ash. Master Thesis, University of Johannesburg, Johannesburg, South Africa.
[4] TANG, L. S., WU, Y. P., ZHAO, Z. L., ZHAO, L., & CHEN, H. K. (2019). Dynamic Stress Response Characteristics within Soil and Influence of pH under Cyclic Loading. Journal of Yangtze River Scientific Research Institute, 36(12), 78. doi:10.11988/ckyyb.20180622. (In Chinese).
[5] Ikechukwu, A. F., & Hassan, M. M. (2022). Assessing the Extent of Pavement Deterioration Caused by Subgrade Volumetric Movement Through Moisture Infiltration. International Journal of Pavement Research and Technology, 15(3), 676–692. doi:10.1007/s42947-021-00044-y.
[6] Aneke, F. I. (2018). Behaviour Of Unsaturated Soils for Road Pavement Structure Under Cyclic Loading. Ph.D. Thesis, Central University of Technology, Free State, Bloemfontein, South Africa.
[7] Ikechukwu, A. F., & Mostafa, M. M. H. (2020). Performance assessment of pavement structure using dynamics cone penetrometer (DCP). International Journal of Pavement Research and Technology, 13(5), 466–476. doi:10.1007/s42947-020-0249-z.
[8] Ikechukwu, A. F., & Mostafa, M. M. H. (2021). Assessing the coupling effects of nanosized fly ash and precompression stress towards mitigating subgrade cracks mobilised by traffic loading. Nanotechnology for Environmental Engineering, 6(3), 63. doi:10.1007/s41204-021-00157-6.
[9] Aneke, F. I., Mostafa, M. M. H., & El Kamash, W. (2021). Pre-compression and capillarity effect of treated expansive subgrade subjected to compressive and tensile loadings. Case Studies in Construction Materials, 15, e00575. doi:10.1016/j.cscm.2021.e00575.
[10] Aneke, F. I., & Onyelowe, K. C. (2022). Applications of preloading pressure on expansive subgrade treated with nano-geopolymer binder for cyclic crack resistance. Nanotechnology for Environmental Engineering, 7(3), 593–607. doi:10.1007/s41204-022-00250-4.
[11] Lu, Z., Fang, R., Yao, H., Hu, Z., & Liu, J. (2018). Evaluation and Analysis of the Traffic Load–Induced Settlement of Roads on Soft Subsoils with Low Embankments. International Journal of Geomechanics, 18(6), 41–56. doi:10.1061/(asce)gm.1943-5622.0001123.
[12] Ikechukwu, A. F., Hassan, M. M., & Moubarak, A. (2021). Swelling stress effects on shear strength resistance of subgrades. International Journal of Geotechnical Engineering, 15(8), 939–949. doi:10.1080/19386362.2019.1656445.
[13] Tang, L. S., Chen, H. K., Sun, Y. L., Zhang, Q. H., & Liao, H. R. (2018). Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests. Geomechanics and Engineering, 16(2), 113–124. doi:10.12989/gae.2018.16.2.113.
[14] Guo, L., Wang, J., Cai, Y., Liu, H., Gao, Y., & Sun, H. (2013). Undrained deformation behavior of saturated soft clay under long-term cyclic loading. Soil Dynamics and Earthquake Engineering, 50(1), 28–37. doi:10.1016/j.soildyn.2013.01.029.
[15] Cai, Y., Sun, Q., Guo, L., Juang, C. H., & Wang, J. (2015). Permanent deformation characteristics of saturated sand under cyclic loading. Canadian Geotechnical Journal, 52(6), 795–807. doi:10.1139/cgj-2014-0341.
[16] Liu, X., Zhang, X., & Wang, X. (2021). Resilient modulus and cumulative plastic strain of frozen silty clay under dynamic aircraft loading. SN Applied Sciences, 3(10), 805. doi:10.1007/s42452-021-04792-1.
[17] Qiu, C., Cao, D., Wang, Z., & Xu, G. (2016). Permanent deformation characteristics of saturated sand reinforced with horizontal-vertical inclusions under cyclic loading. Electronic Journal of Geotechnical Engineering, 21(21), 6545–6554.
[18] Das, N., & Singh, S. K. (2019). Geotechnical behaviour of lateritic soil reinforced with brown waste and synthetic fibre. International Journal of Geotechnical Engineering, 13(3), 287–297. doi:10.1080/19386362.2017.1344002.
[19] Moghal, A. A. B., Basha, B. M., & Ashfaq, M. (2019). Probabilistic Study on the Geotechnical Behavior of Fiber Reinforced Soil. Frontiers in Geotechnical Engineering. Developments in Geotechnical Engineering. Springer, Singapore. doi:10.1007/978-981-13-5871-5_17.
[20] Ibraim, E., Camenen, J. F., Diambra, A., Kairelis, K., Visockaite, L., & Consoli, N. C. (2018). Energy efficiency of fibre reinforced soil formation at small element scale: Laboratory and numerical investigation. Geotextiles and Geomembranes, 46(4), 497–510. doi:10.1016/j.geotexmem.2018.04.008.
[21] Seed, H. B., & Idriss, I. M. (1970). Soil moduli and damping factors for dynamic response analysis. Journal of Terramechanics, 8(3), 109. doi:10.1016/0022-4898(72)90110-3.
[22] AASHTO. (1962). The AASHTO road test, report 5-pavement research. Pavement Research. Accession No. 01417540, Highway Research Board, American Association of State Highway and Transportation Officials (AASHTO), Washington DC, United States.
[23] Brown, S. F., & Hyde, A. F. L. (1975). Significance of cyclic confining stress in repeated-load triaxial testing of granular material. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(9), A102. doi:10.1016/0148-9062(76)90013-9.
[24] Ling, J. M., Wang, W., & Wu, H. B. (2002). Residual deformation of saturated clay subgrade under vehicle load. Tongji Daxue Xuebao/Journal of Tongji University, 30(11), 1315–1320. doi:10.3321/j.issn:0253-374X.2002.11.007.
[25] Mazari, M., Navarro, E., Abdallah, I., & Nazarian, S. (2014). Comparison of numerical and experimental responses of pavement systems using various resilient modulus models. Soils and Foundations, 54(1), 36–44. doi:10.1016/j.sandf.2013.12.004.
[26] Yang, M., Men, Y. M., Cao, L., & Yuan, L. Q. (2016). Numerical analysis of stress in soil due to subway moving loads in ground fissure area. Chinese Journal of Underground Space and Engineering, 12 (06), 1545–1552.
[27] Thevakumar, K., Indraratna, B., Ferreira, F. B., Carter, J., & Rujikiatkamjorn, C. (2021). The influence of cyclic loading on the response of soft subgrade soil in relation to heavy haul railways. Transportation Geotechnics, 29, 100571. doi:10.1016/j.trgeo.2021.100571.
[28] ASTM D1140-17. (2017). Standard Test Methods for Determining the Amount of Material Finer than 75-μm (No. 200) Sieve in Soils by Washing. ASTM International, Pennsylvania, United States. doi:10.1520/D1140-17.
[29] ASTM D4318-17e1. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.
[30] ASTM D3822/D3822M-14. (2020). Standard Test Method for Tensile Properties of Single Textile Fibres. ASTM International, Pennsylvania, United States. doi:10.1520/D3822_D3822M-14R20.
[31] ASTM D698-12. (2007). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12400 ft- lbf/ft3 (600 kN- m/ m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.
[32] Bledzki, A. K., Mamun, A. A., Lucka-Gabor, M., & Gutowski, V. S. (2008). The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters, 2(6), 413–422. doi:10.3144/expresspolymlett.2008.50.
[33] AASHTO T307-99. (2003). Standard method of test for determining the resilient modulus of soils and aggregate materials. American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.
[34] Vucetic, M., & Mortezaie, A. (2015). Cyclic secant shear modulus versus pore water pressure in sands at small cyclic strains. Soil Dynamics and Earthquake Engineering, 70, 60–72. doi:10.1016/j.soildyn.2014.12.001.
[35] Salour, F., Erlingsson, S., & Zapata, C. E. (2013). Modelling resilient modulus seasonal variation of Silty sand subgrade soils with matric suction control. Canadian Geotechnical Journal, 51(12), 1413–1422. doi:10.1139/cgj-2013-0484.
[36] Yaghoubi, E., Yaghoubi, M., Guerrieri, M., & Sudarsanan, N. (2021). Improving expansive clay subgrades using recycled glass: Resilient modulus characteristics and pavement performance. Construction and Building Materials, 302, 124384. doi:10.1016/j.conbuildmat.2021.124384.
[37] Gaspard, K., Zhang, Z., Gautreau, G., Hanifa, K., Zapata, C. E., & Abufarsakh, M. (2019). Modeling the Resilient Modulus Variation of in Situ Soils due to Seasonal Moisture Content Variations. Advances in Civil Engineering, 2019. doi:10.1155/2019/1793601.
[38] George, V., & Kumar, A. (2018). Studies on modulus of resilience using cyclic tri-axial test and correlations to PFWD, DCP, and CBR. International Journal of Pavement Engineering, 19(11), 976–985. doi:10.1080/10298436.2016.1230428.
[39] Al Adili, A., Azzam, R., Spagnoli, G., & Schrader, J. (2012). Strength of soil reinforced with fiber materials (Papyrus). Soil Mechanics and Foundation Engineering, 48(6), 241–247. doi:10.1007/s11204-012-9154-z.
[40] GЂuchowski, A., & Sas, W. (2020). Long-term cyclic loading impact on the creep deformation mechanism in cohesive materials. Materials, 13(17), 3907. doi:10.3390/ma13173907.
[41] An, R., Kong, L., Shi, W., & Zhang, X. (2022). Stiffness decay characteristics and disturbance effect evaluation of structured clay based on in-situ tests. Soils and Foundations, 62(5), 101184. doi:10.1016/j.sandf.2022.101184.
[42] Kennedy, S., Clarke, S., & Shepley, P. (2022). The Effect of Stress Level on the Resilient Modulus of Non-Engineered Mudrock Backfill Materials. CivilEng, 3(3), 630–642. doi:10.3390/civileng3030037.
[43] Xie, L., Zhao, Z., & Lei, Y. (2019). Accumulated Plastic Strain of Silty Clay under Subway Moving Loads. Journal of Shenyang Jianzhu University (Natural Science), 35(1), 91–100. doi:10.11717/j.issn:2095-1922.2019.01.11.
[44] Sandjak, K., & Tiliouine, B. (2012). Experimental evaluation of non-linear resilient deformations of some algerian aggregates under cyclic loading. Arabian Journal for Science and Engineering, 39(3), 1507–1516. doi:10.1007/s13369-013-0737-4.
[45] Tang, L., Zhao, Z., Chen, H., Wu, Y., & Zeng, Y. (2019). Dynamic stress accumulation model of granite residual soil under cyclic loading based on small-size creep tests. Journal of Central South University, 26(3), 728–742. doi:10.1007/s11771-019-4043-5.
[46] Bian, X., Jiang, J., Jin, W., Sun, D., Li, W., & Li, X. (2016). Cyclic and Postcyclic Triaxial Testing of Ballast and Subballast. Journal of Materials in Civil Engineering, 28(7), 4016032. doi:10.1061/(asce)mt.1943-5533.0001523.
[47] Han, Z., Vanapalli, S. K., Ren, J. ping, & Zou, W. lie. (2018). Characterizing cyclic and static moduli and strength of compacted pavement subgrade soils considering moisture variation. Soils and Foundations, 58(5), 1187–1199. doi:10.1016/j.sandf.2018.06.003.
[48] Estabragh, A. R., Moghadas, M., Moradi, M., & Javadi, A. A. (2017). Consolidation behavior of an unsaturated silty soil during drying and wetting. Soils and Foundations, 57(2), 277–287. doi:10.1016/j.sandf.2017.03.005.
[49] Kumar, S. S., Krishna, A. M., & Dey, A. (2017). Evaluation of dynamic properties of sandy soil at high cyclic strains. Soil Dynamics and Earthquake Engineering, 99, 157–167. doi:10.1016/j.soildyn.2017.05.016.
[50] Soliman, H., & Shalaby, A. (2015). Permanent deformation behavior of unbound granular base materials with varying moisture and fines content. Transportation Geotechnics, 4, 1–12. doi:10.1016/j.trgeo.2015.06.001.
[51] Madhavi Latha., G., & Nandhi Varman., A. M. (2016). Static and cyclic load response of reinforced sand through large triaxial tests. Japanese Geotechnical Society Special Publication, 2(68), 2342–2346. doi:10.3208/jgssp.igs-39.
[52] Ying, M., Liu, F., Wang, J., Wang, C., & Li, M. (2021). Coupling effects of particle shape and cyclic shear history on shear properties of coarse-grained soil–geogrid interface. Transportation Geotechnics, 27, 100504. doi:10.1016/j.trgeo.2020.100504.
[53] Olgun, M. (2013). Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynthetics International, 20(4), 263–275. doi:10.1680/gein.13.00016.
[54] Gao, L., Zhou, Q., Yu, X., Wu, K., & Mahfouz, A. H. (2017). Experimental study on the unconfined compressive strength of carbon fiber reinforced clay soil. Marine Georesources & Geotechnology, 35(1), 143–148. doi:10.1080/1064119X.2015.1102184.
[55] Tang, C. S., Li, J., Wang, D. Y., & Shi, B. (2016). Investigation on the interfacial mechanical behavior of wave-shaped fiber reinforced soil by pullout test. Geotextiles and Geomembranes, 44(6), 872–883. doi:10.1016/j.geotexmem.2016.05.001.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
