Study on Mechanical and Durability Properties of East Borneo Double Layer Porous Concrete Paving Block

Yudi Pranoto, Nor Fazilah Hashim, . Tumingan, Daru Purbaningtyas


Massive infrastructure development in East Borneo has reduced the water catchment area. One of the efforts to overcome this is by implementing porous paving with superplasticizer and local materials to improve quality, overcome material scarcity, and save costs. The purpose of this study was to determine the best layer variation of porous paving using Palu and Senoni materials with variations of 1/4, 1/2, and 3/4 of Senoni aggregate. In this study, the test object was made in the form of a beam with a quality of concrete planned at K300 MPa according to the compressive strength, flexural strength, porosity, and permeability values tested at the ages of 7, 14, 21, and 28 days. Based on the results, the variant layer of 1/4 Senoni obtained maximum compressive strength, flexural strength, porosity, and permeability of 17.306 MPa, 3.984 MPa, 18.120%, and 0.216 cm/second at the age of 28 days, respectively. Thus categorized this combination as C quality. Which was included in the C quality group with an application as a pedestrian area. According to the permeability result, double-layer porous paving can accelerate water absorption on the surface to prevent waterlogging when it rains. The increasing variation of layers in double-layer porous paving affects the compressive strength, flexural strength, porosity, and permeability.


Doi: 10.28991/CEJ-SP2023-09-012

Full Text: PDF


Paving Porous Double Layer; Senoni Material; Palu Material; Compressive Strength; Porosity.


Rifqi, M. G., Amin, M. S., & Lesmana, Y. I. (2018). Karakteristik Paving Berongga Menggunakan Material Batu Kali Bulat Berbasis Ramah Lingkungan. Potensi: Jurnal Sipil Politeknik, 20(1), 28–32. doi:10.35313/potensi.v20i1.1000.

Xie, N., Akin, M., & Shi, X. (2019). Permeable concrete pavements: A review of environmental benefits and durability. Journal of Cleaner Production, 210, 1605–1621. doi:10.1016/j.jclepro.2018.11.134.

Razzaghmanesh, M., & Beecham, S. (2018). A review of permeable pavement clogging investigations and recommended maintenance regimes. Water (Switzerland), 10(3). doi:10.3390/w10030337.

Kuruppu, U., Rahman, A., & Rahman, M. A. (2019). Permeable pavement as a stormwater best management practice: a review and discussion. Environmental Earth Sciences, 78(10), 1–20. doi:10.1007/s12665-019-8312-2.

Mulyono, T., & Anisah. (2019). Laboratory Experiment: Pervious Concrete for Permeable Pavement, Focus in Compressive Strength and Permeability. IOP Conference Series: Earth and Environmental Science, 366(1), 012019. doi:10.1088/1755-1315/366/1/012019.

Jonbi, J., & Fulazzaky, M. A. (2020). Modeling the water absorption and compressive strength of geopolymer paving block: An empirical approach. Measurement, 158, 107695. doi:10.1016/j.measurement.2020.107695.

Maharana, G., Jena, B., & Panda, S. (2020). A Study On Mechanical And Durability Properties Of Interlocking Fly Ash Based Concrete Paver Block Using Different Types Chopped Fibers. Journal of Xi’an University of Architecture & Technology, 12(5), 6–9.

Junaid, M., Shah, M. Z. A., Yaseen, G., Awan, H. H., Khan, D., & Jawad, M. (2022). Investigating the Effect of Gradation, Temperature and Loading Duration on the Resilient Modulus of Asphalt Concrete. Civil Engineering Journal, 8(2), 278-289. doi:10.28991/CEJ-2022-08-02-07.

Limantara, A. D., Winarto, S., Gardjito, E., Subiyanto, B., Raharjo, D., Santoso, A., Sudarmanto, H. L., & Mudjanarko, S. W. (2018). Optimization of standard mix design of porous paving coconut fiber and shell for the parking area. AIP Conference Proceedings. doi:10.1063/1.5062655.

Zhang, J., Ma, G., Dai, Z., Ming, R., Cui, X., & She, R. (2018). Numerical study on pore clogging mechanism in pervious pavements. Journal of Hydrology, 565, 589–598. doi:10.1016/j.jhydrol.2018.08.072.

Liu, Q., Liu, S., Hu, G., Yang, T., Du, C., & Oeser, M. (2021). Infiltration Capacity and Structural Analysis of Permeable Pavements for Sustainable Urban: A Full-scale Case Study. Journal of Cleaner Production, 288, 125111. doi:10.1016/j.jclepro.2020.125111.

Manan, A., Ahmad, M., Ahmad, F., Basit, A., & Ayaz Khan, M. N. (2018). Experimental Investigation of Compressive Strength and Infiltration Rate of Pervious Concrete by Fully Reduction of Sand. Civil Engineering Journal, 4(4), 724. doi:10.28991/cej-0309127.

Nistratov, A. V., Klimenko, N. N., Pustynnikov, I. V., & Vu, L. K. (2022). Thermal Regeneration and Reuse of Carbon and Glass Fibers from Waste Composites. Emerging Science Journal, 6(5), 967-984. doi:10.28991/ESJ-2022-06-05-04.

Irlan, A. O., Rintawati, D., & Paikun, P. (2020). Literature Study of Porous Concrete with the Addition of Fly Ash, Superplasticizer, and Fibers on Compressive Strength. Kilat, 9(2), 171-180. (In Indonesian).

ACI 522R-10. (2010). Report on Pervious Concrete, American Concrete Institute (ACI), Michigan, United States.

Andres-Valeri, V. C., Juli-Gandara, L., Jato-Espino, D., & Rodriguez-Hernandez, J. (2018). Characterization of the infiltration capacity of porous concrete pavements with low constant head permeability tests. Water (Switzerland), 10(4), 480. doi:10.3390/w10040480.

Liu, Y., Zhuge, Y., Chow, C. W. K., Keegan, A., Li, D., Pham, P. N., Huang, J., & Siddique, R. (2020). Utilization of drinking water treatment sludge in concrete paving blocks: Microstructural analysis, durability and leaching properties. Journal of Environmental Management, 262, 110352. doi:10.1016/j.jenvman.2020.110352.

Gomes, J. P. J., Ponzo, A. P. S., & Oliveira, A. S. de. (2021). Viability of a terrace covered with porous concrete paving blocks for coffee bean drying. Revista Agrogeoambiental, 12(4). doi:10.18406/2316-1817v12n420201523.

Jusli, E., Md. Nor, H., Jaya, R. P., Haron, Z., Yahya, M. N., Azman, M., & Lim, L. K. (2015). Low Noise and Properties of Double Layer Concrete Paving Blocks. ICGSCE 2014, 291–299. doi:10.1007/978-981-287-505-1_34.

Abdi, F. N., Sutanto, H., & Prandaka, E. D. (2019). Effect of Adding Alum to Concrete Mixtures Using Local Coarse Aggregate in East Kalimantan and Fine Aggregate Ex. Mahakam Is Viewed from Compressive Strength. Teknologi Sipil: Jurnal Ilmu Pengetahuan dan Teknologi, 3(1), 50-64. (In Indonesian).

SNI 03-0691-1996. (1996). Bata Beton (Paving block). Standard Nasional Indonesia (SNI), Jakarta, Indonesia. (In Indonesian).

SNI 03-6826-2002. (2002). Normal Consistency Testing Method. Standard Nasional Indonesia (SNI), Jakarta, Indonesia. (In Indonesian).

SNI 03-6827-2002. (2002). Time Setting Test Method. Standard Nasional Indonesia (SNI), Jakarta, Indonesia. (In Indonesian).

SNI 2531:2015. (2015). Hydraulic Cement Density Test Method. Standard Nasional Indonesia (SNI), Jakarta, Indonesia. (In Indonesian).

SNI 1969-2008. (2008). How to test specific gravity and water absorption of coarse aggregate. Standard Nasional Indonesia (SNI), Jakarta, Indonesia. (In Indonesian).

SNI 03-1968-1990 Metode. (1990). Tests on Fine and Coarse Aggregate Sieve Analysis. Standard Nasional Indonesia (SNI), Jakarta, Indonesia. (In Indonesian).

SNI 1971:2011. (2011). How to Test Total Aggregate Water Content by Drying. Standard Nasional Indonesia (SNI), Jakarta, Indonesia. (In Indonesian).

SNI 03-4804-1998. (1998). Test Method for Bulk Weight and Air Voids in Aggregates. Standard Nasional Indonesia (SNI), Jakarta, Indonesia. (In Indonesian).

SNI 03-4141-1996. (1996). Clay Clod Testing Method. Standard Nasional Indonesia (SNI), Jakarta, Indonesia. (In Indonesian).

SNI 03- 2417-2008. (2008). How to Test Aggregate Wear with a Los Angeles Abrasion Machine. Standard Nasional Indonesia (SNI), Jakarta, Indonesia. (In Indonesian).

PT. SIKA. (2017). Product Data Sheet: Sikament ® NN Extra Description, Version 01.01. Bogor, Indonesia. Available online: (accessed on May 2023).

Full Text: PDF

DOI: 10.28991/CEJ-SP2023-09-012


  • There are currently no refbacks.

Copyright (c) 2022 Yudi Pranoto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.