Indoor Climate Prediction Using Attention-Based Sequence-to-Sequence Neural Network
Abstract
Doi: 10.28991/CEJ-2023-09-05-06
Full Text: PDF
Keywords
References
Prosekov, A. Y., & Ivanova, S. A. (2018). Food security: The challenge of the present. Geoforum, 91(February), 73–77. doi:10.1016/j.geoforum.2018.02.030.
Budiman, A. S., Gunawan, F., Djuana, E., Pardamean, B., Romeli, S., Putri, D. N. N., Aji, D. P. B., Rahardjo, K., Stevanus, Ilham Wibowo, M., Daffa, N., & Owen, R. (2022). Smart Dome 4.0: Low-Cost, Independent, Automated Energy System for Agricultural Purposes enabled by Machine Learning. Journal of Physics: Conference Series, 2224(1), 0–11. doi:10.1088/1742-6596/2224/1/012118.
Kamarulzaman, A., Hasanuzzaman, M., & Rahim, N. A. (2021). Global advancement of solar drying technologies and its future prospects: A review. Solar Energy, 221(December 2020), 559–582. doi:10.1016/j.solener.2021.04.056.
Gunawan, F. E., Budiman, A. S., Pardamean, B., Djuana, E., Romeli, S., Hananda, N., Harito, C., Aji, D. P. B., Putri, D. N. N., & Stevanus. (2022). Design and energy assessment of a new hybrid solar drying dome - Enabling Low-Cost, Independent and Smart Solar Dryer for Indonesia Agriculture 4.0. IOP Conference Series: Earth and Environmental Science, 998(1), 0–11. doi:10.1088/1755-1315/998/1/012052.
Putri, D. N. N., Djuana, E., Rahardjo, K., Aji, D. P., Gunawan, F. E., Budiman, A. S., Pardamean, B., Stevanus, & Romeli, S. (2022). Power System Design for Solar Dryer Dome in Agriculture. 5th International Conference on Power Engineering and Renewable Energy (ICPERE), (22-23 November 2022), Bandung, Indonesia. doi:10.1109/ICPERE56870.2022.10037364.
Udomkun, P., Romuli, S., Schock, S., Mahayothee, B., Sartas, M., Wossen, T., Njukwe, E., Vanlauwe, B., & Müller, J. (2020). Review of solar dryers for agricultural products in Asia and Africa: An innovation landscape approach. Journal of Environmental Management, 268, 110730. doi:10.1016/j.jenvman.2020.110730.
Ullah, I., Fayaz, M., Aman, M., & Kim, D. H. (2022). An optimization scheme for IoT based smart greenhouse climate control with efficient energy consumption. Computing, 104(2), 433–457. doi:10.1007/s00607-021-00963-5.
Morgner, P. et al. (2017). Privacy Implications of Room Climate Data. Computer Security – ESORICS 2017. Lecture Notes in Computer Science, 10493. Springer, Cham, Switzerland. doi:10.1007/978-3-319-66399-9_18.
Lauzon, F. Q. (2012). An introduction to deep learning. 2012 11th International Conference on Information Science, Signal Processing and Their Applications (ISSPA). doi:10.1109/isspa.2012.6310529.
Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent Neural Networks for Time Series Forecasting: Current status and future directions. International Journal of Forecasting, 37(1), 388–427. doi:10.1016/j.ijforecast.2020.06.008.
Yang, S., Yu, X., & Zhou, Y. (2020). LSTM and GRU Neural Network Performance Comparison Study: Taking Yelp Review Dataset as an Example. 2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI). doi:10.1109/iwecai50956.2020.00027.
Hwang, S., Jeon, G., Jeong, J., & Lee, J. Y. (2019). A novel time series based Seq2Seq model for temperature prediction in firing furnace process. Procedia Computer Science, 155(2018), 19–26. doi:10.1016/j.procs.2019.08.007.
Yousuf, H., Lahzi, M., Salloum, S. A., & Shaalan, K. (2021). A systematic review on sequence-to-sequence learning with neural network and its models. International Journal of Electrical and Computer Engineering, 11(3), 2315–2326. doi:10.11591/ijece.v11i3.pp2315-2326.
Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of deep learning. Neurocomputing, 452, 48–62. doi:10.1016/j.neucom.2021.03.091.
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473. doi:10.48550/arXiv.1409.0473
Fu, X., Gao, F., Wu, J., Wei, X., & Duan, F. (2019). Spatiotemporal Attention Networks for Wind Power Forecasting. 2019 International Conference on Data Mining Workshops (ICDMW). doi:10.1109/icdmw.2019.00032.
Setiawan, K. E., Elwirehardja, G. N., & Pardamean, B. (2022). Systematic Literature Review on Machine Learning Predictive Models for Indoor Climate in Smart Solar Dryer Dome. 2022 4th International Conference on Cybernetics and Intelligent System (ICORIS). doi:10.1109/icoris56080.2022.10031503.
Gunawan, F. E., Budiman, A. S., Pardamean, B., Djuana, E., Romeli, S., Cenggoro, T. W., ... & Asrol, M. (2021). Multivariate time-series deep learning for joint prediction of temperature and relative humidity in a closed space. International Conference on Computer Science and Computational Intelligence, November 2021, Virtual Conference.
Liu, Y., Li, D., Wan, S., Wang, F., Dou, W., Xu, X., Li, S., Ma, R., & Qi, L. (2022). A long short-term memory-based model for greenhouse climate prediction. International Journal of Intelligent Systems, 37(1), 135–151. doi:10.1002/int.22620.
Ali, A., & Hassanein, H. S. (2020). Time-Series Prediction for Sensing in Smart Greenhouses. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. doi:10.1109/globecom42002.2020.9322549.
Ullah, I., Fayaz, M., Naveed, N., & Kim, D. (2020). ANN Based Learning to Kalman Filter Algorithm for Indoor Environment Prediction in Smart Greenhouse. IEEE Access, 8, 159371–159388. doi:10.1109/ACCESS.2020.3016277.
Allouhi, A., Choab, N., Hamrani, A., & Saadeddine, S. (2021). Machine learning algorithms to assess the thermal behavior of a Moroccan agriculture greenhouse. Cleaner Engineering and Technology, 5, 100346. doi:10.1016/j.clet.2021.100346.
Elhariri, E., & Taie, S. A. (2019). H-Ahead Multivariate microclimate Forecasting System Based on Deep Learning. 2019 International Conference on Innovative Trends in Computer Engineering (ITCE). doi:10.1109/itce.2019.8646540.
Chen, S., Li, B., Cao, J., & Mao, B. (2018). Research on Agricultural Environment Prediction Based on Deep Learning. Procedia Computer Science, 139, 33–40. doi:10.1016/j.procs.2018.10.214.
Fang, Z., Crimier, N., Scanu, L., Midelet, A., Alyafi, A., & Delinchant, B. (2021). Multi-zone indoor temperature prediction with LSTM-based sequence to sequence model. Energy and Buildings, 245, 111053. doi:10.1016/j.enbuild.2021.111053.
Setiawan, K. E., Elwirehardja, G. N., & Pardamean, B. (2022). Sequence to Sequence Deep Learning Architecture for Forecasting Temperature and Humidity inside Closed Space. 2022 10th International Conference on Cyber and IT Service Management (CITSM). doi:10.1109/citsm56380.2022.9936008.
Cenggoro, T. W., Tanzil, F., Aslamiah, A. H., Karuppiah, E. K., & Pardamean, B. (2018). Crowdsourcing annotation system of object counting dataset for deep learning algorithm. IOP Conference Series: Earth and Environmental Science, 195(1), 012063. doi:10.1088/1755-1315/195/1/012063.
Pardamean, B., Muljo, H. H., Cenggoro, T. W., Chandra, B. J., & Rahutomo, R. (2019). Using transfer learning for smart building management system. Journal of Big Data, 6(1), 1-12. doi:10.1186/s40537-019-0272-6.
Jebli, I., Belouadha, F. Z., Kabbaj, M. I., & Tilioua, A. (2021). Prediction of solar energy guided by Pearson correlation using machine learning. Energy, 224, 120109. doi:10.1016/j.energy.2021.120109.
Schober, P., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763–1768. doi:10.1213/ANE.0000000000002864.
Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-term memory model. Artificial Intelligence Review, 53(8), 5929–5955. doi:10.1007/s10462-020-09838-1.
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. doi:10.48550/arXiv.1412.3555.
Dey, R., & Salem, F. M. (2017). Gate-variants of Gated Recurrent Unit (GRU) neural networks. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). doi:10.1109/mwscas.2017.8053243.
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 1724–1734. doi:10.3115/v1/d14-1179.
Setiawan, K. E., Elwirehardja, G. N., & Pardamean, B. (2022). Comparison of Deep Learning Sequence-To-Sequence Models in Predicting Indoor Temperature and Humidity in Solar Dryer Dome. Communications in Mathematical Biology and Neuroscience, 2022, 1–26. doi:10.28919/cmbn/7655.
Bjorck, N., Gomes, C. P., Selman, B., & Weinberger, K. Q. (2018). Understanding batch normalization. Advances in neural information processing systems, 31.
Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. Conference Proceedings - EMNLP 2015: Conference on Empirical Methods in Natural Language Processing, 1412–1421. doi:10.18653/v1/d15-1166.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. doi:10.48550/arXiv.1412.6980
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. doi:10.7717/peerj-cs.623.
Shcherbakov, M. V., Brebels, A., Shcherbakova, N. L., Tyukov, A. P., Janovsky, T. A., & Kamaev, V. A. evich. (2013). A survey of forecast error measures. World Applied Sciences Journal, 24(24), 171–176. doi:10.5829/idosi.wasj.2013.24.itmies.80032.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. doi:10.2753/MTP1069-6679190202.
Chauhan, A. (2017). Time Series Data Mining for Solar Active Region Classification. 1-7. doi:10.13140/RG.2.2.15327.05283.
Schober, P., & Vetter, T. R. (2020). Nonparametric Statistical Methods in Medical Research. Anesthesia and Analgesia, 131(6), 1862–1863. doi:10.1213/ANE.0000000000005101.
Keysers, C., Gazzola, V., & Wagenmakers, E. J. (2020). Using Bayes factor hypothesis testing in neuroscience to establish evidence of absence. Nature Neuroscience, 23(7), 788–799. doi:10.1038/s41593-020-0660-4.
DOI: 10.28991/CEJ-2023-09-05-06
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Karli Eka Setiawan, Gregorius N. Elwirehardja, Bens Pardamean
This work is licensed under a Creative Commons Attribution 4.0 International License.