Modeling and Optimizing Wastewater Stabilization Ponds for Domestic Wastewater Treatment
Downloads
Doi: 10.28991/CEJ-2023-09-11-014
Full Text: PDF
Downloads
[2] Ali, H. Q., & íœçüncü, O. (2023). Mathematical Assessment of the Wastewater Stabilization Ponds for the Geographical Regions of Turkey. MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics, 191-212.
[3] Demirel, D. F., Gönül-Sezer, E. D., & Pehlivan, S. A. (2022). Analyzing the wastewater treatment facility location/network design problem via system dynamics: Antalya, Turkey case. Journal of Environmental Management, 320, 115814. doi:10.1016/j.jenvman.2022.115814.
[4] Ersoy Tonyaloğlu, E., & Nurlu, E. (2023). The Challenges to Sustainable Urban Future in a Rapidly Changing World: A Case Study of Izmir, Turkey. Sustainable Urban Transitions: Research, Policy and Practice, 73–86. doi:10.1007/978-981-99-2695-4_5.
[5] Hafeez, A., Shamair, Z., Shezad, N., Javed, F., Fazal, T., ur Rehman, S., ... & Rehman, F. (2021). Solar powered decentralized water systems: a cleaner solution of the industrial wastewater treatment and clean drinking water supply challenges. Journal of Cleaner Production, 289, 125717. doi:10.1016/j.jclepro.2020.125717.
[6] Ali, H. Q., & íœçüncü, O. (2023). Mathematical modeling and optimization of wastewater stabilization ponds using nonlinear programming. Mehran University Research Journal of Engineering and Technology, 42(1), 198. doi:10.22581/muet1982.2301.18.
[7] Kookana, R. S., Drechsel, P., Jamwal, P., & Vanderzalm, J. (2020). Urbanisation and emerging economies: Issues and potential solutions for water and food security. Science of the Total Environment, 732, 139057. doi:10.1016/j.scitotenv.2020.139057.
[8] Magwaza, S. T., Magwaza, L. S., Odindo, A. O., & Mditshwa, A. (2020). Hydroponic technology as decentralised system for domestic wastewater treatment and vegetable production in urban agriculture: A review. Science of the Total Environment, 698, 134154. doi:10.1016/j.scitotenv.2019.134154.
[9] Ali, H. Q., & íœçüncü, O. (2022). Impact of Baffle Walls on Area and Hydraulic Detention Time Needed for Wastewater Stabilization Ponds at Different Pollutant Loads. International Journal of Environmental Pollution and Environmental Modelling, 5(2), 99-108.
[10] Canturk, U., & Kulaç, Šž. (2021). The effects of climate change scenarios on Tilia ssp. in Turkey. Environmental Monitoring and Assessment, 193(12), 771. doi:10.1007/s10661-021-09546-5.
[11] Diaz-Elsayed, N., Rezaei, N., Ndiaye, A., & Zhang, Q. (2020). Trends in the environmental and economic sustainability of wastewater-based resource recovery: A review. Journal of Cleaner Production, 265, 121598. doi:10.1016/j.jclepro.2020.121598.
[12] Okur, B., & Örçen, N. (2020). Soil salinization and climate change. Climate Change and Soil Interactions, 331–350. doi:10.1016/b978-0-12-818032-7.00012-6.
[13] Tlhagale, M., Liphadzi, S., Bhagwan, J., Naidoo, V., Jonas, K., van Vuuren, L., Medema, G., Andrews, L., Béen, F., Ferreira, M. L., Saatci, A. M., Alpaslan Kocamemi, B., Hassard, F., Singer, A. C., ... Jones, D. L. (2022). Establishment of local wastewater-based surveillance programmes in response to the spread and infection of COVID-19 – case studies from South Africa, the Netherlands, Turkey and England. Journal of Water and Health, 20(2), 287–299. doi:10.2166/WH.2022.185.
[14] Vagheei, R. (2021). Upgrading of waste stabilization ponds using a low-cost small-scale fine bubble diffused aeration system. Water Science and Technology, 84(10–11), 3104–3121. doi:10.2166/wst.2021.330.
[15] Ali, H. Q., & Farooq, A. Characterization of Heavy Metals in Waste Stabilization Ponds: A Case study of Waste Stabilization Ponds at Chokera, Faisalabad. Mühendislik Bilimleri, 110.
[16] Gichamo, T., Gökçekuş, H., Ozsahin, D. U., Gelete, G., & Uzun, B. (2020). Evaluation of different natural wastewater treatment alternatives by fuzzy promethee method. Desalination and Water Treatment, 177, 400–407. doi:10.5004/dwt.2020.25049.
[17] Ali, H. Q., Farooq, A., & Ahmed, M. (2017). Monitoring the Wastewater Treatment Efficiency of Oxidation Ponds at Chokera, Faisalabad. Mehran University Research Journal of Engineering and Technology, 36(4), 987–994. doi:10.22581/muet1982.1704.23.
[18] Ali, H. Q., Farooq, A., Farooq, A., Ahmed, M. L., & Akhtar, M. (2021). Effect of Climatic Conditions on Treatment Efficiency of Wastewater Stabilization Ponds at Chokera, Faisalabad. Mehran University Research Journal of Engineering and Technology, 40(1), 75–81. doi:10.22581/muet1982.2101.07.
[19] Ali, H. Q., & íœçüncü, O. (2022). Optimizing the amount of concrete for the construction of wastewater stabilization ponds: A case study of Ayvadere, Trabzon, Türkiye. Environmental Research and Technology, 5(3), 278–288. doi:10.35208/ert.1141587.
[20] Herschan, J., Tsinda, A., Okurut, K., Malcolm, R., Lapworth, D. J., & Pond, K. (2023). Progress of Using Risk Assessment to Manage Small Drinking-Water Supplies in Rwanda: A Preliminary Study. Processes, 11(3), 748. doi:10.3390/pr11030748.
[21] Lian, Y., Coggins, L. X., Hay, J., van de Ven, A., & Ghadouani, A. (2022). Effect of Attached Growth on Treatment Performance in Waste Stabilization Ponds. Water (Switzerland), 14(20), 3245. doi:10.3390/w14203245.
[22] Rey, A., Mulligan, R., da Silva, A. M. F., Filion, Y., Champagne, P., & Boegman, L. (2021). Three-Dimensional Hydrodynamic Behavior of an Operational Waste-Stabilization Pond. Journal of Environmental Engineering, 147(2), 5020009. doi:10.1061/(asce)ee.1943-7870.0001834.
[23] Kadri, S. U. T., Tavanappanavar, A. N., Nagesh Babu, R., Bilal, M., Singh, B., Gupta, S. K., Bharagava, R. N., Govarthanan, M., Savanur, M. A., & Mulla, S. I. (2021). Overview of Waste Stabilization Ponds in Developing Countries. Cost-efficient Wastewater Treatment Technologies. The Handbook of Environmental Chemistry, Vol. 117. Springer, Cham, Switzerland. doi:10.1007/698_2021_790.
[24] Mahapatra, S., Samal, K., & Dash, R. R. (2022). Waste Stabilization Pond (WSP) for wastewater treatment: A review on factors, modelling and cost analysis. Journal of Environmental Management, 308, 114668. doi:10.1016/j.jenvman.2022.114668.
[25] Goodarzi, D., Mohammadian, A., Pearson, J., & Abolfathi, S. (2022). Numerical modelling of hydraulic efficiency and pollution transport in waste stabilization ponds. Ecological Engineering, 182, 106702. doi:10.1016/j.ecoleng.2022.106702.
[26] Khalifeh Soltani, S. R., Mostafaeipour, A., Almutairi, K., Hosseini Dehshiri, S. J., Hosseini Dehshiri, S. S., & Techato, K. (2022). Predicting effect of floating photovoltaic power plant on water loss through surface evaporation for wastewater pond using artificial intelligence: A case study. Sustainable Energy Technologies and Assessments, 50, 101849. doi:10.1016/j.seta.2021.101849.
[27] Mahyari, F. G., Boegman, L., Rey, A., Mulligan, R., Champagne, P., Filion, Y., & da Silva, A. M. F. (2023). Evaluation of a Three-Dimensional Hydrodynamic and Water Quality Model for Design of Wastewater Stabilization Ponds. Journal of Environmental Engineering, 149(4), 5023003. doi:10.1061/joeedu.eeeng-6987.
[28] Geetha Varma, V., Jha, S., Himesh Karthik Raju, L., Lalith Kishore, R., & Ranjith, V. (2022). A review on decentralized wastewater treatment systems in India. Chemosphere, 300, 134462. doi:10.1016/j.chemosphere.2022.134462.
[29] Pham, D. T., Ho, L., Espinoza-Palacios, J., Arevalo-Durazno, M., Van Echelpoel, W., & Goethals, P. (2020). Generalised linear models for prediction of dissolved oxygen in a waste stabilisation pond. Water (Switzerland), 12(7), 1930. doi:10.3390/w12071930.
[30] Rani, A., & Chang, C.-T. (2021). Modeling and optimization of wastewater treatment processes. Current Developments in Biotechnology and Bioengineering, 373–396, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-821009-3.00006-3.
[31] ouchama, K. (2022). Efficiency of Constructed Wetlands and Wastewater Stabilization Ponds for Wastewater Treatment in Northern Algerian Sahara. Constructed Wetlands for Wastewater Treatment in Hot and Arid Climates. Wetlands: Ecology, Conservation and Management, 7, Springer, Cham, Switzerland. doi:10.1007/978-3-031-03600-2_2.
[32] Gulsen, H., Turan, M., & Altay, A. (2000). The application of an empirical design model in the development of facultative pond design criteria for turkey. Environmental Technology (United Kingdom), 21(12), 1363–1369. doi:10.1080/09593332208618174.
[33] Azam, R., Riaz, M. R., Farooq, M. U., Ali, F., Mohsan, M., Deifalla, A. F., & Mohamed, A. M. (2022). Optimization-Based Economical Flexural Design of Singly Reinforced Concrete Beams: A Parametric Study. Materials, 15(9), 3223. doi:10.3390/ma15093223.
[34] Martínez, F. C., Cansino, A. T., García, M. A. A., Kalashnikov, V., & Rojas, R. L. (2014). Mathematical analysis for the optimization of a design in a facultative pond: Indicator organism and organic matter. Mathematical Problems in Engineering, Vol. 2014, 1–12. doi:10.1155/2014/652509.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.