Efficient Multi-Composite Cement Made of Granulated Blast Furnace Slag (GBFS) and Flash-calcined Sediment

Mahfoud Benzerzour, Duc Chinh Chu, Mouhamadou Amar, Joelle Kleib, Nor-Edine Abriak, Jaouad Nadah


The objectives of this study were to find out in detail how well granulated blast furnace slag (GBFS) could be replaced by flash-calcined sediment (SF sediment) in terms of hydration kinetics and mechanical-microstructural properties when developing an eco-friendly cement binder. The results indicated that the SF sediment substitution with a rate of 25% wt significantly improved the hydration kinetics of cement compared to the reference. This contributed to a considerable enhancement of the mechanical-microstructural properties of the mortar containing the SF sediment. By comparison with the reference, the strength of multi-composite cement-based mortar increased by 33% at 2 days and by 4.5% at 28 days, whereas its porosity decreased by 16.32% and by 12.44% for the same period. The SEM-EDS result showed that the SF sediment substitution did not significantly modify the chemical composition of the C-S-H phase, with a Ca/Si ratio range of 1.82 to 2.84 for both cement pastes. Moreover, Mg2+ and Al3+ions were two principal elements incorporated in C-S-H gels, with different ratios depending on the Ca/Si ratio of C-S-H gels. A novel model established from a combination of the curve fitting method and Power’s approach allowed for accurate prediction of the strength development of multi-composite cement-based mortars. Overall, the SF sediment substitution could be considered a promising option to develop a more eco-friendly cement binder, while the novel approach could be used as a reliable model for the strength prediction of blended cement.


Doi: 10.28991/CEJ-2023-09-11-02

Full Text: PDF


Flash-calcined Sediment; Pozzolanic; Cement; Hydration; Compressive Strength Prediction; Porosity.


Barcelo, L., Kline, J., Walenta, G., & Gartner, E. (2014). Cement and carbon emissions. Materials and Structures / Materiaux et Constructions, 47(6), 1055–1065. doi:10.1617/s11527-013-0114-5.

Matschei, T., Lothenbach, B., & Glasser, F. P. (2007). The role of calcium carbonate in cement hydration. Cement and Concrete Research, 37(4), 551–558. doi:10.1016/j.cemconres.2006.10.013.

Bentz, D. P., Ferraris, C. F., Jones, S. Z., Lootens, D., & Zunino, F. (2017). Limestone and silica powder replacements for cement: Early-age performance. Cement and Concrete Composites, 78, 43–56. doi:10.1016/j.cemconcomp.2017.01.001.

Bentz, D. P., Jones, S. Z., & Lootens, D. (2016). Minimizing Paste Content in Concrete Using Limestone Powders - Demonstration Mixtures. National Institute of Standards and Technology. doi:10.6028/nist.tn.1906.

De Weerdt, K., Haha, M. Ben, Le Saout, G., Kjellsen, K. O., Justnes, H., & Lothenbach, B. (2011). Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 41(3), 279–291. doi:10.1016/j.cemconres.2010.11.014.

Proske, T., Rezvani, M., Palm, S., Müller, C., & Graubner, C. A. (2018). Concretes made of efficient multi-composite cements with slag and limestone. Cement and Concrete Composites, 89, 107–119. doi:10.1016/j.cemconcomp.2018.02.012.

Zajac, M., Skocek, J., Adu-Amankwah, S., Black, L., & Ben Haha, M. (2018). Impact of microstructure on the performance of composite cements: Why higher total porosity can result in higher strength. Cement and Concrete Composites, 90, 178–192. doi:10.1016/j.cemconcomp.2018.03.023.

Joshi, R. C., & Lohita, R. P. (1997). Fly ash in concrete: production, properties and uses (Vol. 2). CRC Press, Boca Raton, United States.

Boddy, A. M., Hooton, R. D., & Thomas, M. D. A. (2003). The effect of the silica content of silica fume on its ability to control alkali-silica reaction. Cement and Concrete Research, 33(8), 1263–1268. doi:10.1016/S0008-8846(03)00058-9.

Teklay, A., Yin, C., Rosendahl, L., & Køhler, L. L. (2015). Experimental and modeling study of flash calcination of kaolinite rich clay particles in a gas suspension calciner. Applied Clay Science, 103, 10–19. doi:10.1016/j.clay.2014.11.003.

Yu, C., Sun, W., & Scrivener, K. (2015). Degradation mechanism of slag blended mortars immersed in sodium sulfate solution. Cement and Concrete Research, 72, 37–47. doi:10.1016/j.cemconres.2015.02.015.

Berthomier, M., Lors, C., Damidot, D., De Larrard, T., Guérandel, C., & Bertron, A. (2021). Leaching of CEM III paste by demineralised or mineralised water at pH 7 in relation with aluminium release in drinking water network. Cement and Concrete Research, 143. doi:10.1016/j.cemconres.2021.106399.

Cyr, M., Lawrence, P., & Ringot, E. (2005). Mineral admixtures in mortars: Quantification of the physical effects of inert materials on short-term hydration. Cement and Concrete Research, 35(4), 719–730. doi:10.1016/j.cemconres.2004.05.030.

Moranville-Regourd, M., & Kamali-Bernard, S. (2019). Cements Made From Blastfurnace Slag. Lea’s Chemistry of Cement and Concrete, 469–507, Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/b978-0-08-100773-0.00010-1.

Yüksel, I., Siddique, R., Khatib, J.M. (2008). Effect of GGBFS and GSS on the properties of mortar. In Proceedings of the Excellence in Concrete Construction through Innovation, 9–10 September 2008, Kingston University, London, United Kingdom.

Richardson, I. G., Wilding, C. R., & Dickson, M. J. (1989). The hydration of blastfurnace slag cements. Advances in Cement Research, 2(8), 147–157. doi:10.1680/adcr.1989.2.8.147.

Sowoidnich, T., Damidot, D., Ludwig, H.-M., Germroth, J., Rosenberg, R., & Cölfen, H. (2023). The nucleation of C–S–H via prenucleation clusters. The Journal of Chemical Physics, 158, 114309. doi:10.1063/5.0141255.

Richardson, J. M., Biernacki, J. J., Stutzman, P. E., & Bentz, D. P. (2002). Stoichiometry of slag hydration with calcium hydroxide. Journal of the American Ceramic Society, 85(4), 947–953. doi:10.1111/j.1151-2916.2002.tb00197.x.

Daube, J., & Bakker, R. (1986). Portland blast-furnace slag cement: a review. Blended Cements. ASTM International, Pennsylvania, United States. doi:10.1520/STP36388S.

NF EN 197-1. (2000). Cement - Part 1: composition, specifications and conformity criteria for common cements. Association Française de Normalisation (AFNOR), Saint-Denis Cedex, France. (In French).

Scrivener, K. L., John, V. M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26. doi:10.1016/j.cemconres.2018.03.015.

Van Bunderen, C., Benboudjema, F., Snellings, R., Vandewalle, L., & Cizer, Ö. (2021). Experimental analysis and modelling of mechanical properties and shrinkage of concrete recycling flash calcined dredging sediments. Cement and Concrete Composites, 115. doi:10.1016/j.cemconcomp.2020.103787.

Faure, A., Coudray, C., Anger, B., Moulin, I., Colina, H., Izoret, L., Théry, F., & Smith, A. (2019). Beneficial reuse of dam fine sediments as clinker raw material. Construction and Building Materials, 218, 365–384. doi:10.1016/j.conbuildmat.2019.05.047.

Chu, D. C., Amar, M., Kleib, J., Benzerzour, M., Betrancourt, D., Abriak, N. E., & Nadah, J. (2022). The Pozzolanic Activity of Sediments Treated by the Flash Calcination Method. Waste and Biomass Valorization, 13(12), 4963–4982. doi:10.1007/s12649-022-01789-8.

Banfill, P. F. G., & Saunders, D. C. (1986). The relationship between the sorption of organic compounds on cement and the retardation of hydration. Cement and Concrete Research, 16(3), 399–410. doi:10.1016/0008-8846(86)90116-X.

Venda Oliveira, P. J. da, Vieira, A. F. V., & Correia, A. A. S. (2017). Effect of organic matter in soft soils on the effectiveness of preloading for foundations. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 170(4), 305–311. doi:10.1680/jgeen.16.00082.

Yang, Y., Wu, S., & Huang, X. (2021). Experimental Study on the Effect of Fulvic Acid in Waste Slurry on Flocculation and Zeta Potential. Sustainability, 13(14), 7784. doi:10.3390/su13147784.

Snellings, R., Horckmans, L., Van Bunderen, C., Vandewalle, L., & Cizer, Ö. (2017). Flash-calcined dredging sediment blended cements: effect on cement hydration and properties. Materials and Structures/Materiaux et Constructions, 50(6). doi:10.1617/s11527-017-1108-5.

Tironi, A., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2012). Kaolinitic calcined clays: Factors affecting its performance as pozzolans. Construction and Building Materials, 28(1), 276–281. doi:10.1016/j.conbuildmat.2011.08.064.

Fernandez, R., Martirena, F., & Scrivener, K. L. (2011). The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research, 41(1), 113–122. doi:10.1016/j.cemconres.2010.09.013.

Safhi, A. el M., Benzerzour, M., Rivard, P., Abriak, N. E., & Ennahal, I. (2019). Development of self-compacting mortars based on treated marine sediments. Journal of Building Engineering, 22, 252–261. doi:10.1016/j.jobe.2018.12.024.

Benzerzour, M., Amar, M., & Abriak, N.-E. (2017). New experimental approach of the reuse of dredged sediments in a cement matrix by physical and heat treatment. Construction and Building Materials, 140, 432–444. doi:10.1016/j.conbuildmat.2017.02.142.

Safhi, A. el M., Rivard, P., Yahia, A., Benzerzour, M., & Khayat, K. H. (2020). Valorization of dredged sediments in self-consolidating concrete: Fresh, hardened, and microstructural properties. Journal of Cleaner Production, 263. doi:10.1016/j.jclepro.2020.121472.

Amar, M., Benzerzour, M., Safhi, A. E. M., & Abriak, N. E. (2018). Durability of a cementitious matrix based on treated sediments. Case Studies in Construction Materials, 8, 258–276. doi:10.1016/j.cscm.2018.01.007.

Amar, M., Benzerzour, M., Abriak, N. E., & Mamindy-Pajany, Y. (2017). Study of the pozzolanic activity of a dredged sediment from Dunkirk harbour. Powder Technology, 320, 748–764. doi:10.1016/j.powtec.2017.07.055.

Bucher, R., Cyr, M., & Escadeillas, G. (2021). Performance-based evaluation of flash-metakaolin as cement replacement in marine structures–Case of chloride migration and corrosion. Construction and Building Materials, 267. doi:10.1016/j.conbuildmat.2020.120926.

San Nicolas, R., Cyr, M., & Escadeillas, G. (2013). Characteristics and applications of flash metakaolins. Applied Clay Science, 83–84, 253–262. doi:10.1016/j.clay.2013.08.036.

Chen, C., Habert, G., Bouzidi, Y., Jullien, A., & Ventura, A. (2010). LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling, 54(12), 1231–1240. doi:10.1016/j.resconrec.2010.04.001.

Zeraoui, A., Maherzi, W., Benzerzour, M., Abriak, N. E., & Aouad, G. (2023). Development of Flash-Calcined Sediment and Blast Furnace Slag Ternary Binders. Buildings, 13(2), 333. doi:10.3390/buildings13020333.

Alloul, A., Amar, M., Benzerzour, M., & Abriak, N. E. (2023). Developing mortar using limestone flash-calcined dredged sediment/millstone-clay cement binder (LFC). Journal of Building Engineering, 76. doi:10.1016/j.jobe.2023.107346.

Chu, D. C., Kleib, J., Amar, M., Benzerzour, M., & Abriak, N. E. (2022). Recycling of dredged sediment as a raw material for the manufacture of Portland cement – Numerical modeling of the hydration of synthesized cement using the CEMHYD3D code. Journal of Building Engineering, 48. doi:10.1016/j.jobe.2021.103871.

Chu, D. C., Kleib, J., Amar, M., Benzerzour, M., & Abriak, N. E. (2021). Determination of the degree of hydration of Portland cement using three different approaches: Scanning electron microscopy (SEM-BSE) and Thermogravimetric analysis (TGA). Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00754.

Schläpfer, P., & Bukowski, R. (1933). Studies on the determination of free lime and calcium hydroxide in cement clinkers, cements, and slags and set hydraulic mortars, Federal Materials Testing Institute at the E.T.H., 63, Zurich, German.

NF-EN 196-3. (2017). Methods of testing cement. Part 3: Determination of setting times and soundness. Association Française de Normalisation (AFNOR), Saint-Denis Cedex, France. (In French).

Chikouche, M. A., Ghorbel, E., & Bibi, M. (2016). The possibility of using dredging sludge in manufacturing cements: Optimization of heat treatment cycle and ratio replacement. Construction and Building Materials, 106, 330-341. doi:10.1016/j.conbuildmat.2015.12.128.

Beaudoin, J., & Odler, I. (2019). Hydration, Setting and Hardening of Portland Cement. Lea’s Chemistry of Cement and Concrete, 157–250, Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/b978-0-08-100773-0.00005-8.

Zhang, J., & Scherer, G. W. (2011). Comparison of methods for arresting hydration of cement. Cement and Concrete Research, 41(10), 1024–1036. doi:10.1016/j.cemconres.2011.06.003.

Scrivener, K., Snellings, R., & Lothenbach, B. (Eds.). (2018). A Practical Guide to Microstructural Analysis of Cementitious Materials. CRC Press, Boca Raton, United States. doi:10.1201/b19074.

Georget, F., Wilson, W., & Scrivener, K. L. (2021). EDXIA: Microstructure characterisation from quantified SEM-EDS hypermaps. Cement and Concrete Research, 141. doi:10.1016/j.cemconres.2020.106327.

NF EN 196-1. (2016). Methods of testing cement - Part 1: determination of strength. Association Française de Normalisation (AFNOR), Saint-Denis Cedex, France. (In French).

Rao, G. A. (2001). Generalization of Abrams’ law for cement mortars. Cement and Concrete Research, 31(3), 495–502. doi:10.1016/S0008-8846(00)00473-7.

Lecomte, A., De Larrard, F., & Mechling, J. M. (2001). Compressive strength of hydraulic concretes to the unoptimised granular skeleton. Bulletin LPC, 234, 89-105. (In French).

Amar, M., Benzerzour, M., & Abriak, N. E. (2018). Towards the establishment of formulation laws for sediment-based mortars. Journal of Building Engineering, 16, 106–117. doi:10.1016/j.jobe.2017.12.011.

Lothenbach, B., Scrivener, K., & Hooton, R. D. (2011). Supplementary cementitious materials. Cement and Concrete Research, 41(12), 1244–1256. doi:10.1016/j.cemconres.2010.12.001.

Avet, F., & Scrivener, K. (2020). Effect of temperature on the water content of CASH in plain Portland and blended cements. Cement and Concrete Research, 136, 106124. doi:10.1016/j.cemconres.2020.106124.

Bouarroudj, M. E., Rémond, S., Bulteel, D., Potier, G., Michel, F., Zhao, Z., & Courard, L. (2021). Use of grinded hardened cement pastes as mineral addition for mortars. Journal of Building Engineering, 34, 101863. doi:10.1016/j.jobe.2020.101863.

Kocaba, V., Gallucci, E., & Scrivener, K. L. (2012). Methods for determination of degree of reaction of slag in blended cement pastes. Cement and Concrete Research, 42(3), 511–525. doi:10.1016/j.cemconres.2011.11.010.

Deboucha, W., Leklou, N., Khelidj, A., & Oudjit, M. N. (2017). Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration. Construction and Building Materials, 146, 687–701. doi:10.1016/j.conbuildmat.2017.04.132.

NF EN 206-1. (2004). Concrete - Part 1: Specification, performance, production and conformity. Association Française de Normalisation (AFNOR), Saint-Denis Cedex, France. (In French).

Pane, I., & Hansen, W. (2005). Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cement and Concrete Research, 35(6), 1155–1164. doi:10.1016/j.cemconres.2004.10.027.

NIST (2003). Technical Note VCCTL-01. National Institute of Standards and Technology, Maryland, United States. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7096.pdf (accessed on May 2023).

Collepardi, M., Baldini, G., Pauri, M., & Corradi, M. (1978). The effect of pozzolanas on the tricalcium aluminate hydration. Cement and Concrete Research, 8(6), 741–751. doi:10.1016/0008-8846(78)90083-2.

Bentz, D. P., Ardani, A., Barrett, T., Jones, S. Z., Lootens, D., Peltz, M. A., Sato, T., Stutzman, P. E., Tanesi, J., & Weiss, W. J. (2015). Multi-scale investigation of the performance of limestone in concrete. Construction and Building Materials, 75, 1–10. doi:10.1016/j.conbuildmat.2014.10.042.

Bentz, D. P. (2006). Modeling the influence of limestone filler on cement hydration using CEMHYD3D. Cement and Concrete Composites, 28(2), 124–129. doi:10.1016/j.cemconcomp.2005.10.006.

Fernandez Lopez, R. (2009). Calcined clayey soils as a potential replacement for cement in developing countries. Ph.D. Thesis, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland.

Hjorth, J., Skibsted, J., & Jakobsen, H. J. (1988). 29Si MAS NMR studies of portland cement components and effects of microsilica on the hydration reaction. Cement and Concrete Research, 18(5), 789–798. doi:10.1016/0008-8846(88)90104-4.

Ramachandran, V. S. (1976). Hydration of cement—role of triethanolamine. Cement and Concrete research, 6(5), 623-631. doi:10.1016/0008-8846(76)90026-0.

Kolani, B., Buffo-Lacarrière, L., Sellier, A., Escadeillas, G., Boutillon, L., & Linger, L. (2012). Hydration of slag-blended cements. Cement and Concrete Composites, 34(9), 1009–1018. doi:10.1016/j.cemconcomp.2012.05.007.

Juenger, M. C., Snellings, R., & Bernal, S. A. (2019). Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research, 122, 257-273. doi:10.1016/j.cemconres.2019.05.008.

Zajac, M., Rossberg, A., Le Saout, G., & Lothenbach, B. (2014). Influence of limestone and anhydrite on the hydration of Portland cements. Cement and Concrete Composites, 46, 99–108. doi:10.1016/j.cemconcomp.2013.11.007.

Okoronkwo, M. U., & Glasser, F. P. (2016). Stability of strätlingite in the CASH system. Materials and Structures/Materiaux et Constructions, 49(10), 4305–4318. doi:10.1617/s11527-015-0789-x.

Bahman-Zadeh, F., Ramezanianpour, A. A., & Zolfagharnasab, A. (2022). Effect of carbonation on chloride binding capacity of limestone calcined clay cement (LC3) and binary pastes. Journal of Building Engineering, 52. doi:10.1016/j.jobe.2022.104447.

Mokhtar, M., Inayat, A., Ofili, J., & Schwieger, W. (2010). Thermal decomposition, gas phase hydration and liquid phase reconstruction in the system Mg/Al hydrotalcite/mixed oxide: A comparative study. Applied Clay Science, 50(2), 176–181. doi:10.1016/j.clay.2010.07.019.

Ye, H., Huang, L., & Chen, Z. (2019). Influence of activator composition on the chloride binding capacity of alkali-activated slag. Cement and Concrete Composites, 104, 103368. doi:10.1016/j.cemconcomp.2019.103368.

Cardinaud, G., Rozière, E., Martinage, O., Loukili, A., Barnes-Davin, L., Paris, M., & Deneele, D. (2021). Calcined clay – Limestone cements: Hydration processes with high and low-grade kaolinite clays. Construction and Building Materials, 277. doi:10.1016/j.conbuildmat.2021.122271.

Avet, F., & Scrivener, K. (2018). Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3). Cement and Concrete Research, 107, 124–135. doi:10.1016/j.cemconres.2018.02.016.

Antoni, M., Rossen, J., Martirena, F., & Scrivener, K. (2012). Cement substitution by a combination of metakaolin and limestone. Cement and Concrete Research, 42(12), 1579–1589. doi:10.1016/j.cemconres.2012.09.006.

Wang, D., Shi, C., Farzadnia, N., Shi, Z., Jia, H., & Ou, Z. (2018). A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, 181, 659–672. doi:10.1016/j.conbuildmat.2018.06.075.

Alarcon-Ruiz, L., Platret, G., Massieu, E., & Ehrlacher, A. (2005). The use of thermal analysis in assessing the effect of temperature on a cement paste. Cement and Concrete Research, 35(3), 609–613. doi:10.1016/j.cemconres.2004.06.015.

Castellote, M., Alonso, C., Andrade, C., Turrillas, X., & Campo, J. (2004). Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction. Cement and Concrete Research, 34(9), 1633–1644. doi:10.1016/S0008-8846(03)00229-1.

Zhang, Y., & Çopuroğlu, O. (2022). The role of hydrotalcite-like phase and monosulfate in slag cement paste during atmospheric and accelerated carbonation. Cement and Concrete Composites, 132. doi:10.1016/j.cemconcomp.2022.104642.

Mounanga, P., Khelidj, A., Loukili, A., & Baroghel-Bouny, V. (2004). Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach. Cement and Concrete Research, 34(2), 255–265. doi:10.1016/j.cemconres.2003.07.006.

Snellings, R., Machner, A., Bolte, G., Kamyab, H., Durdzinski, P., Teck, P., Zajac, M., Muller, A., de Weerdt, K., & Haha, M. Ben. (2022). Hydration kinetics of ternary slag-limestone cements: Impact of water to binder ratio and curing temperature. Cement and Concrete Research, 151. doi:10.1016/j.cemconres.2021.106647.

Taylor, R., Richardson, I. G., & Brydson, R. M. D. (2010). Composition and microstructure of 20-year-old ordinary Portland cement-ground granulated blast-furnace slag blends containing 0 to 100% slag. Cement and Concrete Research, 40(7), 971–983. doi:10.1016/j.cemconres.2010.02.012.

Muller, A. C. A. (2014). Characterization of porosity & CSH in cement pastes by 1H NMR. Ph.D. Thesis, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland.

Rossen, J. E., & Scrivener, K. L. (2017). Optimization of SEM-EDS to determine the C–A–S–H composition in matured cement paste samples. Materials Characterization, 123, 294–306. doi:10.1016/j.matchar.2016.11.041.

Gruskovnjak, A., Lothenbach, B., Holzer, L., Figi, R., & Winnefeld, F. (2006). Hydration of alkali-activated slag: comparison with ordinary Portland cement. Advances in Cement Research, 18(3), 119–128. doi:10.1680/adcr.2006.18.3.119.

Bazzoni, A., Suhua, M., Wang, Q., Shen, X., Cantoni, M., & Scrivener, K. L. (2014). The effect of magnesium and zinc ions on the hydration kinetics of C3S. Journal of the American Ceramic Society, 97(11), 3684–3693. doi:10.1111/jace.13156.

Yudenfreund, M., Odler, I., & Brunauer, S. (1972). Hardened portland cement pastes of low porosity I. Materials and experimental methods. Cement and Concrete Research, 2(3), 313–330. doi:10.1016/0008-8846(72)90073-7.

Cassagnabère, F., Mouret, M., & Escadeillas, G. (2009). Early hydration of clinker-slag-metakaolin combination in steam curing conditions, relation with mechanical properties. Cement and Concrete Research, 39(12), 1164–1173. doi:10.1016/j.cemconres.2009.07.023.

Lawrence, P., Cyr, M., & Ringot, E. (2003). Mineral admixtures in mortars: Effect of inert materials on short-term hydration. Cement and Concrete Research, 33(12), 1939–1947. doi:10.1016/S0008-8846(03)00183-2.

Papayianni, I., & Stefanidou, M. (2006). Strength-porosity relationships in lime-pozzolan mortars. Construction and Building Materials, 20(9), 700–705. doi:10.1016/j.conbuildmat.2005.02.012.

Chabannes, M., Kazemi-Kamyab, H., Trigallez, J., & Snellings, R. (2022). Performance and microstructure development of lime–calcined fluvial sediment binders under different curing conditions. Cement and Concrete Research, 160, 106903. doi:10.1016/j.cemconres.2022.106903.

Du, H., & Pang, S. D. (2020). High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute. Construction and Building Materials, 264. doi:10.1016/j.conbuildmat.2020.120152.

Cheng, S., Shui, Z., Sun, T., Yu, R., & Zhang, G. (2018). Durability and microstructure of coral sand concrete incorporating supplementary cementitious materials. Construction and Building Materials, 171, 44–53. doi:10.1016/j.conbuildmat.2018.03.082.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-11-02


  • There are currently no refbacks.

Copyright (c) 2023 Duc Chinh CHU

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.