Laboratory Innovation to Investigate Concrete Paving Blocks Compressive Strength
Abstract
Doi: 10.28991/CEJ-2023-09-11-03
Full Text: PDF
Keywords
References
Wang, X., Chin, C. S., & Xia, J. (2023). Study on the properties variation of recycled concrete paving block containing multiple waste materials. Case Studies in Construction Materials, 18(December 2022), 1–33. doi:10.1016/j.cscm.2022.e01803.
Contreras Llanes, M., Romero Pérez, M., Gázquez González, M. J., & Bolívar Raya, J. P. (2022). Construction and demolition waste as recycled aggregate for environmentally friendly concrete paving. Environmental Science and Pollution Research, 29(7), 9826–9840. doi:10.1007/s11356-021-15849-4.
Sundaramurthy, S., Bala, S., Sharma, A. K., Verma, J., Zahmatkesh, S., Arisutha, S., Verma, S., Sillanpaa, M., Ravichandran, N., & Panneerselvam, B. (2022). Performance Evaluation of Environmentally Sustainable Precast Cement Concrete Paver Blocks Using Fly Ash and Polypropylene Fibre. Sustainability (Switzerland), 14(23), 1–16. doi:10.3390/su142315699.
Cho, B. H., Won, M., & Nam, B. H. (2021). Layer Composition of Continuously Reinforced Concrete Pavement Optimized Using a Regression Analysis Method. Infrastructures, 6(4), 56. doi:10.3390/infrastructures6040056.
Silva, W. B. C., Barroso, S. H. A., Cabral, A. E. B., Stefanutti, R., & Picado-Santos, L. G. (2023). Assessment of concrete road paving blocks with coal bottom ash: Physical and mechanical characterization. Case Studies in Construction Materials, 18(1), 1–13. doi:10.1016/j.cscm.2023.e02094.
Dahim, M., Abuaddous, M., Al-Mattarneh, H., Rawashdeh, A., & Ismail, R. (2021). Enhancement of road pavement material using conventional and nano-crude oil fly ash. Applied Nanoscience (Switzerland), 11(10), 2517–2524. doi:10.1007/s13204-021-02103-z.
Arjun Siva Rathan, R. T., & Sunitha, V. (2021). Development of Deflection Prediction Model for Interlocking Concrete Block Pavements. Transportation Research Record: Journal of the Transportation Research Board, 2676(3), 292–314. doi:10.1177/03611981211051339.
Duppati, S., & Gopi, R. (2022). Strength and durability studies on paver blocks with rice straw ash as partial replacement of cement. Materials Today: Proceedings, 52, 710–715. doi:10.1016/j.matpr.2021.10.104.
Arjun Siva Rathan, R. T., Aravinda Sai. V., & Sunitha, V. (2021). Mechanical and structural performance evaluation of pervious interlocking paver blocks. Construction and Building Materials, 292, 1–20. doi:10.1016/j.conbuildmat.2021.123438.
Tempa, K., Chettri, N., Thapa, G., Phurba, Gyeltshen, C., Norbu, D., Gurung, D., & Wangchuk, U. (2022). An experimental study and sustainability assessment of plastic waste as a binding material for producing economical cement-less paver blocks. Engineering Science and Technology, an International Journal, 26, 1–14. doi:10.1016/j.jestch.2021.05.012.
Shah, S. H. A., Ali, B., Ahmed, G. H., Tirmazi, S. M. T., El Ouni, M. H., & Hussain, I. (2022). Effect of recycled steel fibers on the mechanical strength and impact toughness of precast paving blocks. Case Studies in Construction Materials, 16, 1–11. doi:10.1016/j.cscm.2022.e01025.
Yeo, J. S., Koting, S., Onn, C. C., & Mo, K. H. (2021). An overview on the properties of eco-friendly concrete paving blocks incorporating selected waste materials as aggregate. Environmental Science and Pollution Research, 28, 29009–29036. doi:10.1007/s11356-021-13836-3.
Hussain, I., Ali, B., Rashid, M. U., Amir, M. T., Riaz, S., & Ali, A. (2021). Engineering properties of factory manufactured paving blocks utilizing steel slag as cement replacement. Case Studies in Construction Materials, 15(August), 1–8. doi:10.1016/j.cscm.2021.e00755.
Sani, M. S. H. M., Muftah, F., Kamal, M. M. M., & Osman, A. R. (2023). Production of Washed Bottom Ash as Sand Replacement Material in Concrete Paving Block. Journal of Advanced Research in Applied Sciences and Engineering Technology, 29(2), 236–250. doi:10.37934/araset.29.2.236250.
Goyal, H., Kumar, R., & Mondal, P. (2023). Life cycle analysis of paver block production using waste plastics: Comparative assessment with concrete paver blocks. Journal of Cleaner Production, 402, 136857. doi:10.1016/j.jclepro.2023.136857.
Solouki, A., Tataranni, P., & Sangiorgi, C. (2022). Mixture Optimization of Concrete Paving Blocks Containing Waste Silt. Sustainability (Switzerland), 14(1), 1–15. doi:10.3390/su14010451.
Subashi De Silva, G. H. M. J., & Priyamali, M. W. S. (2022). Potential use of waste rice husk ash for concrete paving blocks: strength, durability, and run-off properties. International Journal of Pavement Engineering, 23(7), 2265–2277. doi:10.1080/10298436.2020.1851029.
Avizovas, R., Baskutis, S., Navickas, V., & Tamándl, L. (2022). Effect of Chemical Composition of Clay on Physical-Mechanical Properties of Clay Paving Blocks. Buildings, 12(7), 1–20. doi:10.3390/buildings12070943.
Pratiwi, Y. E., Naharudin, N., Ilham, I., & Wibowo, D. (2022). Eligibility of Nickel Slag Waste Combined with Stone Ash for Manufacturing Paving Block. Journal of Rehabilitation in Civil Engineering, 10(4), 33–44. doi:10.22075/JRCE.2021.23717.1521.
Grdić, D., Despotović, I., Ristić, N., Grdić, Z., & Ćurčić, G. T. (2022). Potential for Use of Recycled Cathode Ray Tube Glass in Making Concrete Blocks and Paving Flags. Materials, 15(4), 1499. doi:10.3390/ma15041499.
Juan-Valdés, A., Rodríguez-Robles, D., García-González, J., de Rojas, M. I. S., Guerra-Romero, M. I., Martínez-García, R., & Morán-Del Pozo, J. M. (2021). Recycled precast concrete kerbs and paving blocks, a technically viable option for footways. Materials, 14(22). doi:10.3390/ma14227007.
Olofinnade, O., Morawo, A., Okedairo, O., & Kim, B. (2021). Solid waste management in developing countries: Reusing of steel slag aggregate in eco-friendly interlocking concrete paving blocks production. Case Studies in Construction Materials, 14. doi:10.1016/j.cscm.2021.e00532.
Baikerikar, A., Mudalgi, S., & Ram, V. V. (2023). Utilization of waste glass powder and waste glass sand in the production of Eco-Friendly concrete. Construction and Building Materials, 377, 131078. doi:10.1016/j.conbuildmat.2023.131078.
Fauzan, Zakaria, R. F., Nugraha, M. D. A., & Al Jauhari, Z. (2023). The Effect of Pet and LDPE Plastic Wastes on the Compressive Strength of Paving Blocks. International Journal of GEOMATE, 24(101), 94–101. doi:10.21660/2023.101.g12250.
Parvathikumar, G., Balachandran, G. B., & Sahadevan, B. (2023). Performance of green concrete paving block imbibed with industrial scrap steel mill scale for sustainable construction. Materials Research Express, 10(3), 1–13. doi:10.1088/2053-1591/acc56b.
Lin, Z., Yang, H., Chen, H., Zhaoqinliu, & Ouyang, X. (2020). A novel structure applied to the permeable brick paving system and its decontamination performance. Polish Journal of Environmental Studies, 29(6), 4213–4223. doi:10.15244/pjoes/118889.
Al-Kheetan, M. J. (2022). Properties of lightweight pedestrian paving blocks incorporating wheat straw: Micro-to macro-scale investigation. Results in Engineering, 16(October), 1–8. doi:10.1016/j.rineng.2022.100758.
Djamaluddin, A. R., Caronge, M. A., Tjaronge, M. W., Lando, A. T., & Irmawaty, R. (2020). Evaluation of sustainable concrete paving blocks incorporating processed waste tea ash. Case Studies in Construction Materials, 12(e00325), 1–12. doi:10.1016/j.cscm.2019.e00325.
Chu, S. H., Poon, C. S., Lam, C. S., & Li, L. (2021). Effect of natural and recycled aggregate packing on properties of concrete blocks. Construction and Building Materials, 278(122247), 1–12. doi:10.1016/j.conbuildmat.2021.122247.
Widayanto, E., Soehardjono, A., Wisnumurti, W., & Zacoeb, A. (2020). The effect of vibropressing compaction process on the compressive strength based concrete paving blocks. AIMS Materials Science, 7(3), 203–216. doi:10.3934/MATERSCI.2020.3.203.
Mohamad, H. M., Bolong, N., Saad, I., Gungat, L., Tioon, J., Pileh, R., & Delton, M. (2022). Manufacture of Concrete Paver Block Using Waste Materials and By-Products: a Review. International Journal of GEOMATE, 22(93), 9–19. doi:10.21660/2022.93.j2363.
Galvín, A. P., Sabrina, S., Auxi, B., Peña, A., & López-Uceda, A. (2023). Leaching performance of concrete eco-blocks: Towards zero-waste in precast concrete plants. Journal of Environmental Management, 344(March), 118409. doi:10.1016/j.jenvman.2023.118409.
Meng, C., Dong, P., Tian, H., Cheng, T., Li, J., Liu, Y., Yang, X., Xie, M., Chen, X., & Xi, X. (2020). Photocatalytic concrete paving block reinforced by TiO2 nanotubes for NO removal. Journal of Materials Science, 55(29), 14280–14291. doi:10.1007/s10853-020-05048-w.
Sambucci, M., & Valente, M. (2021). Ground Waste Tire Rubber as a Total Replacement of Natural Aggregates in Concrete Mixes: Application for Lightweight Paving Blocks. Materials, 14(24), 7493. doi:10.3390/ma14247493.
Desyani, N. A., Yuwono, A. S., & Putra, H. (2023). Assessing the Performance of Melted Plastic as a Replacement for Sand in Paving Block. Advances in Technology Innovation, 8(3), 219–228. doi:10.46604/aiti.2023.11508.
Candian Filho, E. L., Ferreira, G. C. dos S., Nogarotto, D. C., & Pozza, S. A. (2022). Pervious concrete with waste foundry sand: mechanical and hydraulic properties. Matéria (Rio de Janeiro), 27(1). doi:10.1590/s1517-707620220001.1354.
Elizondo-Martinez, E. J., Tataranni, P., Rodriguez-Hernandez, J., & Castro-Fresno, D. (2020). Physical and mechanical characterization of sustainable and innovative porous concrete for urban pavements containing metakaolin. Sustainability (Switzerland), 12(10), 4243. doi:10.3390/su12104243.
Torres de Rosso, L., & Victor Staub de Melo, J. (2020). Impact of incorporating recycled glass on the photocatalytic capacity of paving concrete blocks. Construction and Building Materials, 259, 119778. doi:10.1016/j.conbuildmat.2020.119778.
Yaro, N. S. A., Sutanto, M. H., Habib, N. Z., Napiah, M., Usman, A., Jagaba, A. H., & Al-Sabaeei, A. M. (2023). Modeling and optimization of asphalt content, waste palm oil clinker powder and waste rice straw ash for sustainable asphalt paving employing response surface methodology: A pilot study. Cleaner Materials, 8, 100187. doi:10.1016/j.clema.2023.100187.
Al-Sinan, M. A., & Bubshait, A. A. (2022). Using Plastic Sand as a Construction Material toward a Circular Economy: A Review. Sustainability (Switzerland), 14(11), 6446. doi:10.3390/su14116446.
Abo Almaali, Y., & Al-Busaltan, S. (2021). Permanent deformation characteristics of modified thin overlay bitumen mixtures comprising waste polymers. Materials Today: Proceedings, 42, 2717–2724. doi:10.1016/j.matpr.2020.12.711.
Ahmad, S., Dawood, O., Lashin, M. M. A., Khattak, S. U., Javed, M. F., Aslam, F., Khan, M. I., Elkotb, M. A., & Alaboud, T. M. (2023). Effect of coconut fiber on low-density polyethylene plastic-sand paver blocks. Ain Shams Engineering Journal, 14(8), 101982. doi:10.1016/j.asej.2022.101982.
Koksal, F., Gencel, O., Sahin, Y., & Okur, O. (2021). Recycling bottom ash in production of eco-friendly interlocking concrete paving blocks. Journal of Material Cycles and Waste Management, 23(3), 985–1001. doi:10.1007/s10163-021-01186-8.
Sastrawidana, D. K., Sukarta, I. N., Saraswati, L. P. A., Maryam, S., & Putra, G. A. (2022). Plastic waste reinforced with inorganic pigment from red stone in manufacturing paving block for pedestrian application. Journal of Achievements in Materials and Manufacturing Engineering, 110(2), 49–58. doi:10.5604/01.3001.0015.7042.
DOI: 10.28991/CEJ-2023-09-11-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Riana Herlina Lumingkewas
This work is licensed under a Creative Commons Attribution 4.0 International License.