Laboratory Innovation to Investigate Concrete Paving Blocks Compressive Strength

Riana H. Lumingkewas, Sigit P. Hadiwardoyo, Finno A. Hadiwardoyo


This research aims to evaluate the block method against the cube test method using variations in thickness. Paving blocks can be produced using a hydraulic machine or a simple press, and their performance can be measured based on density and compressive strength tests. The block test method shows that with the same material composition forming the paving block, a paving block with a higher thickness can lead to a lower compressive strength value. In contrast, the cube test method shows different results. The paving blocks used in this study had width and length sizes of 100 and 200 mm, respectively, and had varying heights of 60, 80, and 100 mm. The results reveal that the compressive strength of concrete paving blocks is more precise based on density. Furthermore, the empirical equation and conversion coefficient of the compressive strength of the block test to the cube test have been obtained. This empirical equation is highly recommended for the road pavement industry in controlling the quality of compressive strength, even when using block tests. Further research can help develop a formula for using additive materials in paving blocks.


Doi: 10.28991/CEJ-2023-09-11-03

Full Text: PDF


Paving Block; Density; Compressive Strength; Pavement; Infrastructure.


Wang, X., Chin, C. S., & Xia, J. (2023). Study on the properties variation of recycled concrete paving block containing multiple waste materials. Case Studies in Construction Materials, 18(December 2022), 1–33. doi:10.1016/j.cscm.2022.e01803.

Contreras Llanes, M., Romero Pérez, M., Gázquez González, M. J., & Bolívar Raya, J. P. (2022). Construction and demolition waste as recycled aggregate for environmentally friendly concrete paving. Environmental Science and Pollution Research, 29(7), 9826–9840. doi:10.1007/s11356-021-15849-4.

Sundaramurthy, S., Bala, S., Sharma, A. K., Verma, J., Zahmatkesh, S., Arisutha, S., Verma, S., Sillanpaa, M., Ravichandran, N., & Panneerselvam, B. (2022). Performance Evaluation of Environmentally Sustainable Precast Cement Concrete Paver Blocks Using Fly Ash and Polypropylene Fibre. Sustainability (Switzerland), 14(23), 1–16. doi:10.3390/su142315699.

Cho, B. H., Won, M., & Nam, B. H. (2021). Layer Composition of Continuously Reinforced Concrete Pavement Optimized Using a Regression Analysis Method. Infrastructures, 6(4), 56. doi:10.3390/infrastructures6040056.

Silva, W. B. C., Barroso, S. H. A., Cabral, A. E. B., Stefanutti, R., & Picado-Santos, L. G. (2023). Assessment of concrete road paving blocks with coal bottom ash: Physical and mechanical characterization. Case Studies in Construction Materials, 18(1), 1–13. doi:10.1016/j.cscm.2023.e02094.

Dahim, M., Abuaddous, M., Al-Mattarneh, H., Rawashdeh, A., & Ismail, R. (2021). Enhancement of road pavement material using conventional and nano-crude oil fly ash. Applied Nanoscience (Switzerland), 11(10), 2517–2524. doi:10.1007/s13204-021-02103-z.

Arjun Siva Rathan, R. T., & Sunitha, V. (2021). Development of Deflection Prediction Model for Interlocking Concrete Block Pavements. Transportation Research Record: Journal of the Transportation Research Board, 2676(3), 292–314. doi:10.1177/03611981211051339.

Duppati, S., & Gopi, R. (2022). Strength and durability studies on paver blocks with rice straw ash as partial replacement of cement. Materials Today: Proceedings, 52, 710–715. doi:10.1016/j.matpr.2021.10.104.

Arjun Siva Rathan, R. T., Aravinda Sai. V., & Sunitha, V. (2021). Mechanical and structural performance evaluation of pervious interlocking paver blocks. Construction and Building Materials, 292, 1–20. doi:10.1016/j.conbuildmat.2021.123438.

Tempa, K., Chettri, N., Thapa, G., Phurba, Gyeltshen, C., Norbu, D., Gurung, D., & Wangchuk, U. (2022). An experimental study and sustainability assessment of plastic waste as a binding material for producing economical cement-less paver blocks. Engineering Science and Technology, an International Journal, 26, 1–14. doi:10.1016/j.jestch.2021.05.012.

Shah, S. H. A., Ali, B., Ahmed, G. H., Tirmazi, S. M. T., El Ouni, M. H., & Hussain, I. (2022). Effect of recycled steel fibers on the mechanical strength and impact toughness of precast paving blocks. Case Studies in Construction Materials, 16, 1–11. doi:10.1016/j.cscm.2022.e01025.

Yeo, J. S., Koting, S., Onn, C. C., & Mo, K. H. (2021). An overview on the properties of eco-friendly concrete paving blocks incorporating selected waste materials as aggregate. Environmental Science and Pollution Research, 28, 29009–29036. doi:10.1007/s11356-021-13836-3.

Hussain, I., Ali, B., Rashid, M. U., Amir, M. T., Riaz, S., & Ali, A. (2021). Engineering properties of factory manufactured paving blocks utilizing steel slag as cement replacement. Case Studies in Construction Materials, 15(August), 1–8. doi:10.1016/j.cscm.2021.e00755.

Sani, M. S. H. M., Muftah, F., Kamal, M. M. M., & Osman, A. R. (2023). Production of Washed Bottom Ash as Sand Replacement Material in Concrete Paving Block. Journal of Advanced Research in Applied Sciences and Engineering Technology, 29(2), 236–250. doi:10.37934/araset.29.2.236250.

Goyal, H., Kumar, R., & Mondal, P. (2023). Life cycle analysis of paver block production using waste plastics: Comparative assessment with concrete paver blocks. Journal of Cleaner Production, 402, 136857. doi:10.1016/j.jclepro.2023.136857.

Solouki, A., Tataranni, P., & Sangiorgi, C. (2022). Mixture Optimization of Concrete Paving Blocks Containing Waste Silt. Sustainability (Switzerland), 14(1), 1–15. doi:10.3390/su14010451.

Subashi De Silva, G. H. M. J., & Priyamali, M. W. S. (2022). Potential use of waste rice husk ash for concrete paving blocks: strength, durability, and run-off properties. International Journal of Pavement Engineering, 23(7), 2265–2277. doi:10.1080/10298436.2020.1851029.

Avizovas, R., Baskutis, S., Navickas, V., & Tamándl, L. (2022). Effect of Chemical Composition of Clay on Physical-Mechanical Properties of Clay Paving Blocks. Buildings, 12(7), 1–20. doi:10.3390/buildings12070943.

Pratiwi, Y. E., Naharudin, N., Ilham, I., & Wibowo, D. (2022). Eligibility of Nickel Slag Waste Combined with Stone Ash for Manufacturing Paving Block. Journal of Rehabilitation in Civil Engineering, 10(4), 33–44. doi:10.22075/JRCE.2021.23717.1521.

Grdić, D., Despotović, I., Ristić, N., Grdić, Z., & Ćurčić, G. T. (2022). Potential for Use of Recycled Cathode Ray Tube Glass in Making Concrete Blocks and Paving Flags. Materials, 15(4), 1499. doi:10.3390/ma15041499.

Juan-Valdés, A., Rodríguez-Robles, D., García-González, J., de Rojas, M. I. S., Guerra-Romero, M. I., Martínez-García, R., & Morán-Del Pozo, J. M. (2021). Recycled precast concrete kerbs and paving blocks, a technically viable option for footways. Materials, 14(22). doi:10.3390/ma14227007.

Olofinnade, O., Morawo, A., Okedairo, O., & Kim, B. (2021). Solid waste management in developing countries: Reusing of steel slag aggregate in eco-friendly interlocking concrete paving blocks production. Case Studies in Construction Materials, 14. doi:10.1016/j.cscm.2021.e00532.

Baikerikar, A., Mudalgi, S., & Ram, V. V. (2023). Utilization of waste glass powder and waste glass sand in the production of Eco-Friendly concrete. Construction and Building Materials, 377, 131078. doi:10.1016/j.conbuildmat.2023.131078.

Fauzan, Zakaria, R. F., Nugraha, M. D. A., & Al Jauhari, Z. (2023). The Effect of Pet and LDPE Plastic Wastes on the Compressive Strength of Paving Blocks. International Journal of GEOMATE, 24(101), 94–101. doi:10.21660/2023.101.g12250.

Parvathikumar, G., Balachandran, G. B., & Sahadevan, B. (2023). Performance of green concrete paving block imbibed with industrial scrap steel mill scale for sustainable construction. Materials Research Express, 10(3), 1–13. doi:10.1088/2053-1591/acc56b.

Lin, Z., Yang, H., Chen, H., Zhaoqinliu, & Ouyang, X. (2020). A novel structure applied to the permeable brick paving system and its decontamination performance. Polish Journal of Environmental Studies, 29(6), 4213–4223. doi:10.15244/pjoes/118889.

Al-Kheetan, M. J. (2022). Properties of lightweight pedestrian paving blocks incorporating wheat straw: Micro-to macro-scale investigation. Results in Engineering, 16(October), 1–8. doi:10.1016/j.rineng.2022.100758.

Djamaluddin, A. R., Caronge, M. A., Tjaronge, M. W., Lando, A. T., & Irmawaty, R. (2020). Evaluation of sustainable concrete paving blocks incorporating processed waste tea ash. Case Studies in Construction Materials, 12(e00325), 1–12. doi:10.1016/j.cscm.2019.e00325.

Chu, S. H., Poon, C. S., Lam, C. S., & Li, L. (2021). Effect of natural and recycled aggregate packing on properties of concrete blocks. Construction and Building Materials, 278(122247), 1–12. doi:10.1016/j.conbuildmat.2021.122247.

Widayanto, E., Soehardjono, A., Wisnumurti, W., & Zacoeb, A. (2020). The effect of vibropressing compaction process on the compressive strength based concrete paving blocks. AIMS Materials Science, 7(3), 203–216. doi:10.3934/MATERSCI.2020.3.203.

Mohamad, H. M., Bolong, N., Saad, I., Gungat, L., Tioon, J., Pileh, R., & Delton, M. (2022). Manufacture of Concrete Paver Block Using Waste Materials and By-Products: a Review. International Journal of GEOMATE, 22(93), 9–19. doi:10.21660/2022.93.j2363.

Galvín, A. P., Sabrina, S., Auxi, B., Peña, A., & López-Uceda, A. (2023). Leaching performance of concrete eco-blocks: Towards zero-waste in precast concrete plants. Journal of Environmental Management, 344(March), 118409. doi:10.1016/j.jenvman.2023.118409.

Meng, C., Dong, P., Tian, H., Cheng, T., Li, J., Liu, Y., Yang, X., Xie, M., Chen, X., & Xi, X. (2020). Photocatalytic concrete paving block reinforced by TiO2 nanotubes for NO removal. Journal of Materials Science, 55(29), 14280–14291. doi:10.1007/s10853-020-05048-w.

Sambucci, M., & Valente, M. (2021). Ground Waste Tire Rubber as a Total Replacement of Natural Aggregates in Concrete Mixes: Application for Lightweight Paving Blocks. Materials, 14(24), 7493. doi:10.3390/ma14247493.

Desyani, N. A., Yuwono, A. S., & Putra, H. (2023). Assessing the Performance of Melted Plastic as a Replacement for Sand in Paving Block. Advances in Technology Innovation, 8(3), 219–228. doi:10.46604/aiti.2023.11508.

Candian Filho, E. L., Ferreira, G. C. dos S., Nogarotto, D. C., & Pozza, S. A. (2022). Pervious concrete with waste foundry sand: mechanical and hydraulic properties. Matéria (Rio de Janeiro), 27(1). doi:10.1590/s1517-707620220001.1354.

Elizondo-Martinez, E. J., Tataranni, P., Rodriguez-Hernandez, J., & Castro-Fresno, D. (2020). Physical and mechanical characterization of sustainable and innovative porous concrete for urban pavements containing metakaolin. Sustainability (Switzerland), 12(10), 4243. doi:10.3390/su12104243.

Torres de Rosso, L., & Victor Staub de Melo, J. (2020). Impact of incorporating recycled glass on the photocatalytic capacity of paving concrete blocks. Construction and Building Materials, 259, 119778. doi:10.1016/j.conbuildmat.2020.119778.

Yaro, N. S. A., Sutanto, M. H., Habib, N. Z., Napiah, M., Usman, A., Jagaba, A. H., & Al-Sabaeei, A. M. (2023). Modeling and optimization of asphalt content, waste palm oil clinker powder and waste rice straw ash for sustainable asphalt paving employing response surface methodology: A pilot study. Cleaner Materials, 8, 100187. doi:10.1016/j.clema.2023.100187.

Al-Sinan, M. A., & Bubshait, A. A. (2022). Using Plastic Sand as a Construction Material toward a Circular Economy: A Review. Sustainability (Switzerland), 14(11), 6446. doi:10.3390/su14116446.

Abo Almaali, Y., & Al-Busaltan, S. (2021). Permanent deformation characteristics of modified thin overlay bitumen mixtures comprising waste polymers. Materials Today: Proceedings, 42, 2717–2724. doi:10.1016/j.matpr.2020.12.711.

Ahmad, S., Dawood, O., Lashin, M. M. A., Khattak, S. U., Javed, M. F., Aslam, F., Khan, M. I., Elkotb, M. A., & Alaboud, T. M. (2023). Effect of coconut fiber on low-density polyethylene plastic-sand paver blocks. Ain Shams Engineering Journal, 14(8), 101982. doi:10.1016/j.asej.2022.101982.

Koksal, F., Gencel, O., Sahin, Y., & Okur, O. (2021). Recycling bottom ash in production of eco-friendly interlocking concrete paving blocks. Journal of Material Cycles and Waste Management, 23(3), 985–1001. doi:10.1007/s10163-021-01186-8.

Sastrawidana, D. K., Sukarta, I. N., Saraswati, L. P. A., Maryam, S., & Putra, G. A. (2022). Plastic waste reinforced with inorganic pigment from red stone in manufacturing paving block for pedestrian application. Journal of Achievements in Materials and Manufacturing Engineering, 110(2), 49–58. doi:10.5604/01.3001.0015.7042.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-11-03


  • There are currently no refbacks.

Copyright (c) 2023 Riana Herlina Lumingkewas

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.