Investigation on Existing Tunnel Response to Piles Construction: A Numerical Study

Mo'men Ayasrah, Mohammed Y. Fattah, Mohammed J. Hamood

Abstract


Deep foundations are frequently built close to existing tunnels in the urban environment. Tunnels can only withstand very small movements. The construction of bored piles and/or the subsequent loading of the piles may result in unbearable movements or stresses that could result in cracking of the tunnel linings, which worries obstacles to the tunnel structure. This research presents an understanding of the interaction issue and investigates and evaluates various geometric factors that determine the effect of the construction of the pile on the existing tunnel. However, numerical modeling was established utilizing a modified Mohr-Coulomb constitutive model for the soil strata. Numerous factors have been examined, including different locations of the pile tip to the tunnel centerline as well as variable pile diameters and lengths. The numerical analysis results revealed that the bending moment decreases as the distance from the tunnel increases from 8 to 12 m and then remains constant, while the shear stress is not affected considerably. In addition, the shear stress and bending moment increase with pile diameter and length due to the increased confinement caused by the pile. The spacing has a considerable effect on the horizontal displacement with very little effect on the vertical displacement. Moreover, there is an increase in the shear force developed in the tunnel lining with pile diameter for different spacings between the tunnel and pile. This increase becomes smaller as the pile length increases. At small spacing between the pile and tunnel (8.3 m and 12.5 m), the bending moment in the tunnel lining decreases as the pile length increases.

 

Doi: 10.28991/CEJ-SP2023-09-016

Full Text: PDF


Keywords


Tunneling; Piles; Construction; Deformation; Shear Force.

References


Admiraal, H., & Cornaro, A. (2016). Why underground space should be included in urban planning policy - And how this will enhance an urban underground future. Tunnelling and Underground Space Technology, 55, 214–220. doi:10.1016/j.tust.2015.11.013.

Goh, A. T. C., Zhang, W., Zhang, Y., Xiao, Y., & Xiang, Y. (2018). Determination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach. Bulletin of Engineering Geology and the Environment, 77(2), 489–500. doi:10.1007/s10064-016-0937-8.

von der Tann, L., Sterling, R., Zhou, Y., & Metje, N. (2020). Systems approaches to urban underground space planning and management – A review. Underground Space (China), 5(2), 144–166. doi:10.1016/j.undsp.2019.03.003.

Ayasrah, M., Qiu, H., Zhang, X., & Daddow, M. (2020). Prediction of ground settlement induced by slurry shield tunnelling in granular soils. Civil Engineering Journal (Iran), 6(12), 2273–2289. doi:10.28991/cej-2020-03091617.

Zhang, H.-B., Chen, J.-J., Fan, F., & Wang, J.-H. (2017). Deformation Monitoring and Performance Analysis on the Shield Tunnel Influenced by Adjacent Deep Excavations. Journal of Aerospace Engineering, 30(2), B4015002. doi:10.1061/(asce)as.1943-5525.0000574.

Qiu, H., Zhou, Y., & Ayasrah, M. (2023). Impact Study of Deep Foundations Construction of Inclined and Straight Combined Support Piles on Adjacent Pile Foundations. Applied Sciences (Switzerland), 13(3), 1810. doi:10.3390/app13031810.

Pujadas-Gispert, E., Sanjuan-Delmás, D., de la Fuente, A., Moonen, S. F., & Josa, A. (2020). Environmental analysis of concrete deep foundations: Influence of prefabrication, concrete strength, and design codes. Journal of Cleaner Production, 244, 118751. doi:10.1016/j.jclepro.2019.118751.

Mair, R. J., Taylor, R. N., & Bracegirdle, A. (1993). Subsurface settlement profiles above tunnels in clays. Geotechnique, 43(2), 315–320. doi:10.1680/geot.1993.43.2.315.

Ng, C. W. W., Lu, H., & Peng, S. Y. (2013). Three-dimensional centrifuge modelling of the effects of twin tunnelling on an existing pile. Tunnelling and Underground Space Technology, 35, 189–199. doi:10.1016/j.tust.2012.07.008.

Jongpradist, P., Kaewsri, T., Sawatparnich, A., Suwansawat, S., Youwai, S., Kongkitkul, W., & Sunitsakul, J. (2013). Development of tunneling influence zones for adjacent pile foundations by numerical analyses. Tunnelling and Underground Space Technology, 34, 96–109. doi:10.1016/j.tust.2012.11.005.

Xu, Q., Zhu, H., Ma, X., Ma, Z., Li, X., Tang, Z., & Zhuo, K. (2015). A case history of shield tunnel crossing through group pile foundation of a road bridge with pile underpinning technologies in Shanghai. Tunnelling and Underground Space Technology, 45, 20–33. doi:10.1016/j.tust.2014.09.002.

Yao, J., McNamara, A., & Taylor, R. (2008). The effects of loaded bored piles on existing tunnels. Geotechnical Aspects of Underground Construction in Soft Ground, CRC Press, 751-758.

Salim, N. M., & Lafta, S. J. (2020). The Effect of Group of Piles on Existing Tunnel. IOP Conference Series: Materials Science and Engineering, 737(1), 12093. doi:10.1088/1757-899X/737/1/012093.

Boldini, D., Losacco, N., Bertolin, S., & Amorosi, A. (2016). Modelling of Reinforced Concrete Framed Structures Interacting with a Shallow Tunnel. Procedia Engineering, 158, 176–181. doi:10.1016/j.proeng.2016.08.425.

Lasciarrea, W. G., Amorosi, A., Boldini, D., de Felice, G., & Malena, M. (2019). Jointed Masonry Model: A constitutive law for 3D soil-structure interaction analysis. Engineering Structures, 201, 109803. doi:10.1016/j.engstruct.2019.109803.

Lai, H., Zheng, H., Chen, R., Kang, Z., & Liu, Y. (2020). Settlement behaviors of existing tunnel caused by obliquely under-crossing shield tunneling in close proximity with small intersection angle. Tunnelling and Underground Space Technology, 97, 103258. doi:10.1016/j.tust.2019.103258.

Yin, Q., Xin, T., Zhenggang, H., & Minghua, H. (2023). Measurement and Analysis of Deformation of Underlying Tunnel Induced by Foundation Pit Excavation. Advances in Civil Engineering, 2023, 1–12. doi:10.1155/2023/8897139.

Mahajan, S., Sharma, A., Ayothiraman, R., & Sharma, K. G. (2023). Three-Dimensional Physical Modeling of Response of Existing Metro Tunnel to Pile Loading in Delhi Silt in India. Practice Periodical on Structural Design and Construction, 28(2), 04023008. doi:10.1061/ppscfx.sceng-1159.

Jeon, Y.-J., Kim, S.-H., Kim, J.-S., & Lee, C.-J. (2017). A study on the effects of ground reinforcement on the behaviour of pre-existing piles affected by adjacent tunnelling. Journal of Korean Tunnelling and Underground Space Association, 19(3), 389–407. doi:10.9711/ktaj.2017.19.3.389.

Yoo, C. (2014). Three dimensional numerical investigation on the effect of bridge construction on existing tunnel. KSCE Journal of Civil Engineering, 18(3), 794–802. doi:10.1007/s12205-014-0361-1.

Lueprasert, P., Jongpradist, P., Jongpradist, P., & Suwansawat, S. (2017). Numerical investigation of tunnel deformation due to adjacent loaded pile and pile-soil-tunnel interaction. Tunnelling and Underground Space Technology, 70, 166–181. doi:10.1016/j.tust.2017.08.006.

Lueprasert, P., Jongpradist, P., Jongpradist, P., & Schweiger, H. F. (2023). Structural Responses of a Tunnel Lining Due to an Adjacent Loaded Pile. International Journal of Civil Engineering, 21(6), 1027–1043. doi:10.1007/s40999-023-00821-9.

Zheng, G., Du, Y., Cheng, X., Diao, Y., Deng, X., & Wang, F. (2017). Characteristics and prediction methods for tunnel deformations induced by excavations. Geomechanics and Engineering, 12(3), 361–397. doi:10.12989/gae.2017.12.3.361.

Zhuang, Y., Cui, X., & Hu, S. (2023). Numerical simulation and simplified analytical method to evaluate the displacement of adjacent tunnels caused by excavation. Tunnelling and Underground Space Technology, 132, 104879. doi:10.1016/j.tust.2022.104879.

Lim, C. B., Jusoh, S. N., Lim, C. X., Abang Hasbollah, D. Z., & Sohaei, H. (2023). Tunnel – Pile interaction sequence: Parametric studies. Physics and Chemistry of the Earth, 129, 103312. doi:10.1016/j.pce.2022.103312.

Möller, S. C., & Vermeer, P. A. (2008). On numerical simulation of tunnel installation. Tunnelling and Underground Space Technology, 23(4), 461–475. doi:10.1016/j.tust.2007.08.004.

Ayasrah, M., Qiu, H., & Zhang, X. (2021). Influence of Cairo metro tunnel excavation on pile deep foundation of the adjacent underground structures: Numerical study. Symmetry, 13(3), 426. doi:10.3390/sym13030426.

Nainegali, L., Basudhar, P. K., & Ghosh, P. (2021). Interference of proposed footing with an existing footing resting on non-linearly elastic dense and loose cohesionless soil bed. European Journal of Environmental and Civil Engineering, 25(14), 2574-2591. doi:10.1080/19648189.2019.1638311.

Qiu, H., Wang, Z., Ayasrah, M., Fu, C., & Gang, L. (2022). Numerical Study on the Reinforcement Measures of Tunneling on Adjacent Piles. Symmetry, 14(2), 288. doi:10.3390/sym14020288.

Graine, N., Hjiaj, M., & Krabbenhoft, K. (2021). 3D failure envelope of a rigid pile embedded in a cohesive soil using finite element limit analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 45(2), 265–290. doi:10.1002/nag.3152.

Surarak, C., Likitlersuang, S., Wanatowski, D., Balasubramaniam, A., Oh, E., & Guan, H. (2012). Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays. Soils and Foundations, 52(4), 682–697. doi:10.1016/j.sandf.2012.07.009.

Fattah, M. Y., Shlash, K. T., & Salim, N. M. (2013). Prediction of settlement trough induced by tunneling in cohesive ground. Acta Geotechnica, 8(2), 167–179. doi:10.1007/s11440-012-0169-4.

Fattah, M. Y., Shlash, K. T., & Salim, N. M. (2011). Effect of reduced k0 zone on time-dependent analysis of tunnels. Advances in Civil Engineering, 2011, 1–12. doi:10.1155/2011/963502.

Nawel, B., Salah, M., & Noura, H. (2021). A simplified 3D model for existing tunnel response to piles construction. Selected Scientific Papers - Journal of Civil Engineering, 16(2), 87–103. doi:10.2478/sspjce-2021-0018.


Full Text: PDF

DOI: 10.28991/CEJ-SP2023-09-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Mo'men Abdel Raheem Ayasrah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message