Investigation on Existing Tunnel Response to Piles Construction: A Numerical Study
Abstract
Doi: 10.28991/CEJ-SP2023-09-016
Full Text: PDF
Keywords
References
Admiraal, H., & Cornaro, A. (2016). Why underground space should be included in urban planning policy - And how this will enhance an urban underground future. Tunnelling and Underground Space Technology, 55, 214–220. doi:10.1016/j.tust.2015.11.013.
Goh, A. T. C., Zhang, W., Zhang, Y., Xiao, Y., & Xiang, Y. (2018). Determination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach. Bulletin of Engineering Geology and the Environment, 77(2), 489–500. doi:10.1007/s10064-016-0937-8.
von der Tann, L., Sterling, R., Zhou, Y., & Metje, N. (2020). Systems approaches to urban underground space planning and management – A review. Underground Space (China), 5(2), 144–166. doi:10.1016/j.undsp.2019.03.003.
Ayasrah, M., Qiu, H., Zhang, X., & Daddow, M. (2020). Prediction of ground settlement induced by slurry shield tunnelling in granular soils. Civil Engineering Journal (Iran), 6(12), 2273–2289. doi:10.28991/cej-2020-03091617.
Zhang, H.-B., Chen, J.-J., Fan, F., & Wang, J.-H. (2017). Deformation Monitoring and Performance Analysis on the Shield Tunnel Influenced by Adjacent Deep Excavations. Journal of Aerospace Engineering, 30(2), B4015002. doi:10.1061/(asce)as.1943-5525.0000574.
Qiu, H., Zhou, Y., & Ayasrah, M. (2023). Impact Study of Deep Foundations Construction of Inclined and Straight Combined Support Piles on Adjacent Pile Foundations. Applied Sciences (Switzerland), 13(3), 1810. doi:10.3390/app13031810.
Pujadas-Gispert, E., Sanjuan-Delmás, D., de la Fuente, A., Moonen, S. F., & Josa, A. (2020). Environmental analysis of concrete deep foundations: Influence of prefabrication, concrete strength, and design codes. Journal of Cleaner Production, 244, 118751. doi:10.1016/j.jclepro.2019.118751.
Mair, R. J., Taylor, R. N., & Bracegirdle, A. (1993). Subsurface settlement profiles above tunnels in clays. Geotechnique, 43(2), 315–320. doi:10.1680/geot.1993.43.2.315.
Ng, C. W. W., Lu, H., & Peng, S. Y. (2013). Three-dimensional centrifuge modelling of the effects of twin tunnelling on an existing pile. Tunnelling and Underground Space Technology, 35, 189–199. doi:10.1016/j.tust.2012.07.008.
Jongpradist, P., Kaewsri, T., Sawatparnich, A., Suwansawat, S., Youwai, S., Kongkitkul, W., & Sunitsakul, J. (2013). Development of tunneling influence zones for adjacent pile foundations by numerical analyses. Tunnelling and Underground Space Technology, 34, 96–109. doi:10.1016/j.tust.2012.11.005.
Xu, Q., Zhu, H., Ma, X., Ma, Z., Li, X., Tang, Z., & Zhuo, K. (2015). A case history of shield tunnel crossing through group pile foundation of a road bridge with pile underpinning technologies in Shanghai. Tunnelling and Underground Space Technology, 45, 20–33. doi:10.1016/j.tust.2014.09.002.
Yao, J., McNamara, A., & Taylor, R. (2008). The effects of loaded bored piles on existing tunnels. Geotechnical Aspects of Underground Construction in Soft Ground, CRC Press, 751-758.
Salim, N. M., & Lafta, S. J. (2020). The Effect of Group of Piles on Existing Tunnel. IOP Conference Series: Materials Science and Engineering, 737(1), 12093. doi:10.1088/1757-899X/737/1/012093.
Boldini, D., Losacco, N., Bertolin, S., & Amorosi, A. (2016). Modelling of Reinforced Concrete Framed Structures Interacting with a Shallow Tunnel. Procedia Engineering, 158, 176–181. doi:10.1016/j.proeng.2016.08.425.
Lasciarrea, W. G., Amorosi, A., Boldini, D., de Felice, G., & Malena, M. (2019). Jointed Masonry Model: A constitutive law for 3D soil-structure interaction analysis. Engineering Structures, 201, 109803. doi:10.1016/j.engstruct.2019.109803.
Lai, H., Zheng, H., Chen, R., Kang, Z., & Liu, Y. (2020). Settlement behaviors of existing tunnel caused by obliquely under-crossing shield tunneling in close proximity with small intersection angle. Tunnelling and Underground Space Technology, 97, 103258. doi:10.1016/j.tust.2019.103258.
Yin, Q., Xin, T., Zhenggang, H., & Minghua, H. (2023). Measurement and Analysis of Deformation of Underlying Tunnel Induced by Foundation Pit Excavation. Advances in Civil Engineering, 2023, 1–12. doi:10.1155/2023/8897139.
Mahajan, S., Sharma, A., Ayothiraman, R., & Sharma, K. G. (2023). Three-Dimensional Physical Modeling of Response of Existing Metro Tunnel to Pile Loading in Delhi Silt in India. Practice Periodical on Structural Design and Construction, 28(2), 04023008. doi:10.1061/ppscfx.sceng-1159.
Jeon, Y.-J., Kim, S.-H., Kim, J.-S., & Lee, C.-J. (2017). A study on the effects of ground reinforcement on the behaviour of pre-existing piles affected by adjacent tunnelling. Journal of Korean Tunnelling and Underground Space Association, 19(3), 389–407. doi:10.9711/ktaj.2017.19.3.389.
Yoo, C. (2014). Three dimensional numerical investigation on the effect of bridge construction on existing tunnel. KSCE Journal of Civil Engineering, 18(3), 794–802. doi:10.1007/s12205-014-0361-1.
Lueprasert, P., Jongpradist, P., Jongpradist, P., & Suwansawat, S. (2017). Numerical investigation of tunnel deformation due to adjacent loaded pile and pile-soil-tunnel interaction. Tunnelling and Underground Space Technology, 70, 166–181. doi:10.1016/j.tust.2017.08.006.
Lueprasert, P., Jongpradist, P., Jongpradist, P., & Schweiger, H. F. (2023). Structural Responses of a Tunnel Lining Due to an Adjacent Loaded Pile. International Journal of Civil Engineering, 21(6), 1027–1043. doi:10.1007/s40999-023-00821-9.
Zheng, G., Du, Y., Cheng, X., Diao, Y., Deng, X., & Wang, F. (2017). Characteristics and prediction methods for tunnel deformations induced by excavations. Geomechanics and Engineering, 12(3), 361–397. doi:10.12989/gae.2017.12.3.361.
Zhuang, Y., Cui, X., & Hu, S. (2023). Numerical simulation and simplified analytical method to evaluate the displacement of adjacent tunnels caused by excavation. Tunnelling and Underground Space Technology, 132, 104879. doi:10.1016/j.tust.2022.104879.
Lim, C. B., Jusoh, S. N., Lim, C. X., Abang Hasbollah, D. Z., & Sohaei, H. (2023). Tunnel – Pile interaction sequence: Parametric studies. Physics and Chemistry of the Earth, 129, 103312. doi:10.1016/j.pce.2022.103312.
Möller, S. C., & Vermeer, P. A. (2008). On numerical simulation of tunnel installation. Tunnelling and Underground Space Technology, 23(4), 461–475. doi:10.1016/j.tust.2007.08.004.
Ayasrah, M., Qiu, H., & Zhang, X. (2021). Influence of Cairo metro tunnel excavation on pile deep foundation of the adjacent underground structures: Numerical study. Symmetry, 13(3), 426. doi:10.3390/sym13030426.
Nainegali, L., Basudhar, P. K., & Ghosh, P. (2021). Interference of proposed footing with an existing footing resting on non-linearly elastic dense and loose cohesionless soil bed. European Journal of Environmental and Civil Engineering, 25(14), 2574-2591. doi:10.1080/19648189.2019.1638311.
Qiu, H., Wang, Z., Ayasrah, M., Fu, C., & Gang, L. (2022). Numerical Study on the Reinforcement Measures of Tunneling on Adjacent Piles. Symmetry, 14(2), 288. doi:10.3390/sym14020288.
Graine, N., Hjiaj, M., & Krabbenhoft, K. (2021). 3D failure envelope of a rigid pile embedded in a cohesive soil using finite element limit analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 45(2), 265–290. doi:10.1002/nag.3152.
Surarak, C., Likitlersuang, S., Wanatowski, D., Balasubramaniam, A., Oh, E., & Guan, H. (2012). Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays. Soils and Foundations, 52(4), 682–697. doi:10.1016/j.sandf.2012.07.009.
Fattah, M. Y., Shlash, K. T., & Salim, N. M. (2013). Prediction of settlement trough induced by tunneling in cohesive ground. Acta Geotechnica, 8(2), 167–179. doi:10.1007/s11440-012-0169-4.
Fattah, M. Y., Shlash, K. T., & Salim, N. M. (2011). Effect of reduced k0 zone on time-dependent analysis of tunnels. Advances in Civil Engineering, 2011, 1–12. doi:10.1155/2011/963502.
Nawel, B., Salah, M., & Noura, H. (2021). A simplified 3D model for existing tunnel response to piles construction. Selected Scientific Papers - Journal of Civil Engineering, 16(2), 87–103. doi:10.2478/sspjce-2021-0018.
DOI: 10.28991/CEJ-SP2023-09-016
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Mo'men Abdel Raheem Ayasrah
This work is licensed under a Creative Commons Attribution 4.0 International License.