Effect of Different Ceramic Waste Powder on Characteristics of Fly Ash-Based Geopolymer

Bernardinus Herbudiman, Subari Subari, Bactiar Nugraha, Indah Pratiwi, Asnan Rinovian, Euneke Widyaningsih, Evi Dwi Yanti, Bagus D. Erlangga, Jakah Jakah, Seto Roseno


The escalating demand for construction materials driven by rapid population growth has heightened the reliance on cement binders, resulting in increased CO2 emissions from the cement industry. Geopolymers, considered environmentally friendly alternatives, have been explored in various studies to address this challenge. This research specifically investigates the impact of different types of ceramic waste bricks (BT), floor tiles (FT), roof tiles (RT), and sanitary ceramics (ST) on the physical and mechanical properties of fly ash-based geopolymer mortar. To provide a comprehensive understanding, this research examines the compressive strength, mineral phase, chemical bonds, and microscopic evolution of fly ash geopolymer mortar incorporating varying proportions of each ceramic waste type (25% and 50% fly ash replacement). A consistent mixture of Na2SiO3and NaOH was used for the alkaline solution in all formulations. The curing process was carried out at room temperature for 7, 14, and 28 days prior to the compressive strength test. The result revealed that the inclusion of 25% BT experienced higher strength compared to the control sample after 14 days, but the strength became comparable after 28 days at 40.24 MPa. A reduction in strength was evident with the addition of other ceramic components. Moreover, higher incorporation of CWP correlated with a faster setting time for fresh geopolymers. This was also linked to the degree of gel formation, as indicated in the microstructure images. The emergence of plagioclase minerals was evident in all formulations of the geopolymer products under XRD analysis, while the bond of the geopolymer signature, Si-O-T (T = Si or Al), was identified from the infrared spectra. The microstructure of the binder showed a geopolymer matrix alongside unreacted fly ash particles. Overall, CWP replacement up to 25% can be potential in fly ash geopolymer without sacrificing significant strength loss and remaining in the range of normal strength mortar.


Doi: 10.28991/CEJ-2024-010-02-06

Full Text: PDF


Geopolymer; Fly Ash; Ceramic Waste; Precursor; Compressive Strength.


Mohamad, N., Muthusamy, K., Embong, R., Kusbiantoro, A., & Hashim, M. H. (2022). Environmental impact of cement production and Solutions: A review. Materials Today: Proceedings, 48, 741–746. doi:10.1016/j.matpr.2021.02.212.

Jiang, J., Ye, B., & Liu, J. (2019). Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research. Renewable and Sustainable Energy Reviews, 112, 813–833. doi:10.1016/j.rser.2019.06.024.

Spinelli, M., Romano, M. C., Consonni, S., Campanari, S., Marchi, M., & Cinti, G. (2014). Application of Molten Carbonate Fuel Cells in Cement Plants for CO2 Capture and Clean Power Generation. Energy Procedia, 63, 6517–6526. doi:10.1016/j.egypro.2014.11.687.

Singh, R. L., & Singh, P. K. (2017). Global Environmental Problems. Principles and Applications of Environmental Biotechnology for a Sustainable Future. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Singapore. doi:10.1007/978-981-10-1866-4_2.

Taki, K., Mukherjee, S., Patel, A. K., & Kumar, M. (2020). Reappraisal review on geopolymer: A new era of aluminosilicate binder for metal immobilization. Environmental Nanotechnology, Monitoring & Management, 14, 100345. doi:10.1016/j.enmm.2020.100345.

Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: Clean production, properties and applications. Journal of Cleaner Production, 125, 253–267. doi:10.1016/j.jclepro.2016.03.019.

Amran, M., Debbarma, S., & Ozbakkaloglu, T. (2021). Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Construction and Building Materials, 270. doi:10.1016/j.conbuildmat.2020.121857.

Hlaváček, P., Šmilauer, V., Škvára, F., Kopecký, L., & Šulc, R. (2015). Inorganic foams made from alkali-activated fly ash: Mechanical, chemical and physical properties. Journal of the European Ceramic Society, 35(2), 703–709. doi:10.1016/j.jeurceramsoc.2014.08.024.

Soutsos, M., Boyle, A. P., Vinai, R., Hadjierakleous, A., & Barnett, S. J. (2016). Factors influencing the compressive strength of fly ash based geopolymers. Construction and Building Materials, 110, 355–368. doi:10.1016/j.conbuildmat.2015.11.045.

Al-Majidi, M. H., Lampropoulos, A., Cundy, A., & Meikle, S. (2016). Development of geopolymer mortar under ambient temperature for in situ applications. Construction and Building Materials, 120, 198–211. doi:10.1016/j.conbuildmat.2016.05.085.

Azevedo, A. R. G., Vieira, C. M. F., Ferreira, W. M., Faria, K. C. P., Pedroti, L. G., & Mendes, B. C. (2020). Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles. Journal of Building Engineering, 29. doi:10.1016/j.jobe.2019.101156.

Hwang, C. L., Damtie Yehualaw, M., Vo, D. H., & Huynh, T. P. (2019). Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders. Construction and Building Materials, 218, 519–529. doi:10.1016/j.conbuildmat.2019.05.143.

Mahmoodi, O., Siad, H., Lachemi, M., Dadsetan, S., & Sahmaran, M. (2021). Development and characterization of binary recycled ceramic tile and brick wastes-based geopolymers at ambient and high temperatures. Construction and Building Materials, 301. doi:10.1016/j.conbuildmat.2021.124138.

Luhar, I., Luhar, S., Abdullah, M. M. A. B., Nabiałek, M., Sandu, A. V., Szmidla, J., Jurczyńska, A., Razak, R. A., Aziz, I. H. A., Jamil, N. H., & Deraman, L. M. (2021). Assessment of the suitability of ceramic waste in geopolymer composites: An appraisal. Materials, 14(12). doi:10.3390/ma14123279.

Allaoui, D., Nadi, M., Hattani, F., Majdoubi, H., Haddaji, Y., Mansouri, S., Oumam, M., Hannache, H., & Manoun, B. (2022). Eco-friendly geopolymer concrete based on metakaolin and ceramics sanitaryware wastes. Ceramics International, 48(23), 34793–34802. doi:10.1016/j.ceramint.2022.08.068.

Naenudon, S., Wongsa, A., Ekprasert, J., Sata, V., & Chindaprasirt, P. (2023). Enhancing the properties of fly ash-based geopolymer concrete using recycled aggregate from waste ceramic electrical insulator. Journal of Building Engineering, 68. doi:10.1016/j.jobe.2023.106132.

Yanti, E. D., Mubarok, L., Subari, Erlangga, B. D., Widyaningsih, E., Jakah, Pratiwi, I., Rinovian, A., Nugroho, T., & Herbudiman, B. (2024). Utilization of various ceramic waste as fine aggregate replacement into fly ash-based geopolymer. Materials Letters, 357. doi:10.1016/j.matlet.2023.135651.

Kamseu, E., Akono, A. T., Nana, A., Kaze, R. C., & Leonelli, C. (2021). Performance of geopolymer composites made with feldspathic solid solutions: Micromechanics and microstructure. Cement and Concrete Composites, 124. doi:10.1016/j.cemconcomp.2021.104241.

Scanferla, P., Conte, A., Sin, A., Franchin, G., & Colombo, P. (2021). The effect of fillers on the fresh and hardened properties of 3D printed geopolymer lattices. Open Ceramics, 6. doi:10.1016/j.oceram.2021.100134.

Rashad, A. M., Essa, G. M. F., Mosleh, Y. A., & Morsi, W. M. (2023). Valorization of Ceramic Waste Powder for Compressive Strength and Durability of Fly Ash Geopolymer Cement. Arabian Journal for Science and Engineering, 1-13. doi:10.1007/s13369-023-08428-x.

Bhavsar, J. K., & Panchal, V. (2022). Ceramic Waste Powder as a Partial Substitute of Fly Ash for Geopolymer Concrete Cured at Ambient Temperature. Civil Engineering Journal (Iran), 8(7), 1369–1387. doi:10.28991/CEJ-2022-08-07-05.

Sarkar, M., & Dana, K. (2021). Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceramics International, 47(3), 3473–3483. doi:10.1016/j.ceramint.2020.09.191.

Bayer Öztürk, Z., & Atabey, İ. İ. (2022). Mechanical and microstructural characteristics of geopolymer mortars at high temperatures produced with ceramic sanitaryware waste. Ceramics International, 48(9), 12932–12944. doi:10.1016/j.ceramint.2022.01.166.

Hajimohammadi, A., & van Deventer, J. S. J. (2016). Dissolution behaviour of source materials for synthesis of geopolymer binders: A kinetic approach. International Journal of Mineral Processing, 153, 80–86. doi:10.1016/j.minpro.2016.05.014.

Ranjbar, N., Kuenzel, C., Spangenberg, J., & Mehrali, M. (2020). Hardening evolution of geopolymers from setting to equilibrium: A review. Cement and Concrete Composites, 114. doi:10.1016/j.cemconcomp.2020.103729.

Li, Z., Gao, Y., Zhang, J., Zhang, C., Chen, J., & Liu, C. (2021). Effect of particle size and thermal activation on the coal gangue based geopolymer. Materials Chemistry and Physics, 267. doi:10.1016/j.matchemphys.2021.124657.

Zhang, J., Li, S., Li, Z., Liu, C., & Gao, Y. (2020). Feasibility study of red mud for geopolymer preparation: effect of particle size fraction. Journal of Material Cycles and Waste Management, 22(5), 1328–1338. doi:10.1007/s10163-020-01023-4.

Assi, L. N., Eddie Deaver, E., & Ziehl, P. (2018). Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete. Construction and Building Materials, 167, 372–380. doi:10.1016/j.conbuildmat.2018.01.193.

ASTM C618-12a. (2017). Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-12.

SNI 03-6827-2002. (2002). Standard Test Method for Setting Time of Hydraulic Cement for Civil Engineering. National Standardization Agency of Indonesia, Jakarta, Indonesia.

ASTM C109/C109M-20b. (2021). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-20B.

Topark-Ngarm, P., Chindaprasirt, P., & Sata, V. (2015). Setting Time, Strength, and Bond of High-Calcium Fly Ash Geopolymer Concrete. Journal of Materials in Civil Engineering, 27(7), 04014198. doi:10.1061/(asce)mt.1943-5533.0001157.

Leonard Wijaya, A., Jaya Ekaputri, J., & Triwulan. (2017). Factors influencing strength and setting time of fly ash based-geopolymer paste. MATEC Web of Conferences, 138. doi:10.1051/matecconf/201713801010.

Huseien, G. F., Sam, A. R. M., Shah, K. W., Asaad, M. A., Tahir, M. M., & Mirza, J. (2019). Properties of ceramic tile waste based alkali-activated mortars incorporating GBFS and fly ash. Construction and Building Materials, 214, 355–368. doi:10.1016/j.conbuildmat.2019.04.154.

González-García, D. M., Téllez-Jurado, L., Jiménez-Álvarez, F. J., & Balmori-Ramírez, H. (2017). Structural study of geopolymers obtained from alkali-activated natural pozzolan feldspars. Ceramics International, 43(2), 2606–2613. doi:10.1016/j.ceramint.2016.11.070.

Nergis, D. D. B., Abdullah, M. M. A. B., Sandu, A. V., & Vizureanu, P. (2020). XRD and TG-DTA study of new alkali activated materials based on fly ash with sand and glass powder. Materials, 13(2), 343. doi:10.3390/ma13020343.

Amin, M., Sudibyo, S., Birawidha, D. C., Rinovian, A., Erlangga, B. D., Al Muttaqqi, M., Suka, E. G., & Pratiwi, S. (2023). Effect of bentonite on fly ash and bottom ash based engineered geopolymer composite. Riset Geologi Dan Pertambangan, 33(1), 1225. doi:10.55981/risetgeotam.2023.1225.

Derouiche, R., Zribi, M., & Baklouti, S. (2023). Study of Carbonated Clay-Based Phosphate Geopolymer: Effect of Calcite and Calcination Temperature. Minerals, 13(2), 284. doi:10.3390/min13020284.

Azimi, E. A., Abdullah, M. M. A. B., Vizureanu, P., Salleh, M. A. A. M., Sandu, A. V., Chaiprapa, J., Yoriya, S., Hussin, K., & Aziz, I. H. (2020). Strength development and elemental distribution of dolomite/fly ash geopolymer composite under elevated temperature. Materials, 13(4), 1015. doi:10.3390/ma13041015.

Rees, C. A., Provis, J. L., Lukey, G. C., & Van Deventer, J. S. J. (2007). In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir, 23(17), 9076–9082. doi:10.1021/la701185g.

Yusuf, M. O. (2023). Bond Characterization in Cementitious Material Binders Using Fourier-Transform Infrared Spectroscopy. Applied Sciences (Switzerland), 13(5), 3353. doi:10.3390/app13053353.

Zaharaki, D., Komnitsas, K., & Perdikatsis, V. (2010). Use of analytical techniques for identification of inorganic polymer gel composition. Journal of Materials Science, 45(10), 2715–2724. doi:10.1007/s10853-010-4257-2.

Toniolo, N., Taveri, G., Hurle, K., Roether, J. A., Ercole, P., Dlouhý, I., & Boccaccini, A. R. (2017). Fly-ash-based geopolymers: How the addition of recycled glass or red mud waste influences the structural and mechanical properties. Journal of Ceramic Science and Technology, 8(3), 411–419. doi:10.4416/JCST2017-00053.

Temuujin, J., van Riessen, A., & Williams, R. (2009). Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of Hazardous Materials, 167(1–3), 82–88. doi:10.1016/j.jhazmat.2008.12.121.

Lloyd, R. R., Provis, J. L., & Van Deventer, J. S. J. (2009). Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder. Journal of Materials Science, 44(2), 620–631. doi:10.1007/s10853-008-3078-z.

Feng, M., Jiang, C., Wang, Y., Zou, Y., & Zhao, J. (2023). Experimental Study on Mechanical Properties and Drying Shrinkage Compensation of Solidified Ultra-Fine Dredged Sand Blocks Made with GGBS-Based Geopolymer. Buildings, 13(7), 1750. doi:10.3390/buildings13071750.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-02-06


  • There are currently no refbacks.

Copyright (c) 2024 Bernardinus Herbudiman, Subari S, Bactiar Nugraha, Indah Pratiwi, Asnan Rinovian, Euneke Widyaningsih, Evi Dwi Yanti, Bagus D Erlangga, Jakah J, Seto Roseno

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.