Effect of Different Ceramic Waste Powder on Characteristics of Fly Ash-Based Geopolymer
Abstract
Doi: 10.28991/CEJ-2024-010-02-06
Full Text: PDF
Keywords
References
Mohamad, N., Muthusamy, K., Embong, R., Kusbiantoro, A., & Hashim, M. H. (2022). Environmental impact of cement production and Solutions: A review. Materials Today: Proceedings, 48, 741–746. doi:10.1016/j.matpr.2021.02.212.
Jiang, J., Ye, B., & Liu, J. (2019). Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research. Renewable and Sustainable Energy Reviews, 112, 813–833. doi:10.1016/j.rser.2019.06.024.
Spinelli, M., Romano, M. C., Consonni, S., Campanari, S., Marchi, M., & Cinti, G. (2014). Application of Molten Carbonate Fuel Cells in Cement Plants for CO2 Capture and Clean Power Generation. Energy Procedia, 63, 6517–6526. doi:10.1016/j.egypro.2014.11.687.
Singh, R. L., & Singh, P. K. (2017). Global Environmental Problems. Principles and Applications of Environmental Biotechnology for a Sustainable Future. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Singapore. doi:10.1007/978-981-10-1866-4_2.
Taki, K., Mukherjee, S., Patel, A. K., & Kumar, M. (2020). Reappraisal review on geopolymer: A new era of aluminosilicate binder for metal immobilization. Environmental Nanotechnology, Monitoring & Management, 14, 100345. doi:10.1016/j.enmm.2020.100345.
Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: Clean production, properties and applications. Journal of Cleaner Production, 125, 253–267. doi:10.1016/j.jclepro.2016.03.019.
Amran, M., Debbarma, S., & Ozbakkaloglu, T. (2021). Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Construction and Building Materials, 270. doi:10.1016/j.conbuildmat.2020.121857.
Hlaváček, P., Šmilauer, V., Škvára, F., Kopecký, L., & Šulc, R. (2015). Inorganic foams made from alkali-activated fly ash: Mechanical, chemical and physical properties. Journal of the European Ceramic Society, 35(2), 703–709. doi:10.1016/j.jeurceramsoc.2014.08.024.
Soutsos, M., Boyle, A. P., Vinai, R., Hadjierakleous, A., & Barnett, S. J. (2016). Factors influencing the compressive strength of fly ash based geopolymers. Construction and Building Materials, 110, 355–368. doi:10.1016/j.conbuildmat.2015.11.045.
Al-Majidi, M. H., Lampropoulos, A., Cundy, A., & Meikle, S. (2016). Development of geopolymer mortar under ambient temperature for in situ applications. Construction and Building Materials, 120, 198–211. doi:10.1016/j.conbuildmat.2016.05.085.
Azevedo, A. R. G., Vieira, C. M. F., Ferreira, W. M., Faria, K. C. P., Pedroti, L. G., & Mendes, B. C. (2020). Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles. Journal of Building Engineering, 29. doi:10.1016/j.jobe.2019.101156.
Hwang, C. L., Damtie Yehualaw, M., Vo, D. H., & Huynh, T. P. (2019). Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders. Construction and Building Materials, 218, 519–529. doi:10.1016/j.conbuildmat.2019.05.143.
Mahmoodi, O., Siad, H., Lachemi, M., Dadsetan, S., & Sahmaran, M. (2021). Development and characterization of binary recycled ceramic tile and brick wastes-based geopolymers at ambient and high temperatures. Construction and Building Materials, 301. doi:10.1016/j.conbuildmat.2021.124138.
Luhar, I., Luhar, S., Abdullah, M. M. A. B., Nabiałek, M., Sandu, A. V., Szmidla, J., Jurczyńska, A., Razak, R. A., Aziz, I. H. A., Jamil, N. H., & Deraman, L. M. (2021). Assessment of the suitability of ceramic waste in geopolymer composites: An appraisal. Materials, 14(12). doi:10.3390/ma14123279.
Allaoui, D., Nadi, M., Hattani, F., Majdoubi, H., Haddaji, Y., Mansouri, S., Oumam, M., Hannache, H., & Manoun, B. (2022). Eco-friendly geopolymer concrete based on metakaolin and ceramics sanitaryware wastes. Ceramics International, 48(23), 34793–34802. doi:10.1016/j.ceramint.2022.08.068.
Naenudon, S., Wongsa, A., Ekprasert, J., Sata, V., & Chindaprasirt, P. (2023). Enhancing the properties of fly ash-based geopolymer concrete using recycled aggregate from waste ceramic electrical insulator. Journal of Building Engineering, 68. doi:10.1016/j.jobe.2023.106132.
Yanti, E. D., Mubarok, L., Subari, Erlangga, B. D., Widyaningsih, E., Jakah, Pratiwi, I., Rinovian, A., Nugroho, T., & Herbudiman, B. (2024). Utilization of various ceramic waste as fine aggregate replacement into fly ash-based geopolymer. Materials Letters, 357. doi:10.1016/j.matlet.2023.135651.
Kamseu, E., Akono, A. T., Nana, A., Kaze, R. C., & Leonelli, C. (2021). Performance of geopolymer composites made with feldspathic solid solutions: Micromechanics and microstructure. Cement and Concrete Composites, 124. doi:10.1016/j.cemconcomp.2021.104241.
Scanferla, P., Conte, A., Sin, A., Franchin, G., & Colombo, P. (2021). The effect of fillers on the fresh and hardened properties of 3D printed geopolymer lattices. Open Ceramics, 6. doi:10.1016/j.oceram.2021.100134.
Rashad, A. M., Essa, G. M. F., Mosleh, Y. A., & Morsi, W. M. (2023). Valorization of Ceramic Waste Powder for Compressive Strength and Durability of Fly Ash Geopolymer Cement. Arabian Journal for Science and Engineering, 1-13. doi:10.1007/s13369-023-08428-x.
Bhavsar, J. K., & Panchal, V. (2022). Ceramic Waste Powder as a Partial Substitute of Fly Ash for Geopolymer Concrete Cured at Ambient Temperature. Civil Engineering Journal (Iran), 8(7), 1369–1387. doi:10.28991/CEJ-2022-08-07-05.
Sarkar, M., & Dana, K. (2021). Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceramics International, 47(3), 3473–3483. doi:10.1016/j.ceramint.2020.09.191.
Bayer Öztürk, Z., & Atabey, İ. İ. (2022). Mechanical and microstructural characteristics of geopolymer mortars at high temperatures produced with ceramic sanitaryware waste. Ceramics International, 48(9), 12932–12944. doi:10.1016/j.ceramint.2022.01.166.
Hajimohammadi, A., & van Deventer, J. S. J. (2016). Dissolution behaviour of source materials for synthesis of geopolymer binders: A kinetic approach. International Journal of Mineral Processing, 153, 80–86. doi:10.1016/j.minpro.2016.05.014.
Ranjbar, N., Kuenzel, C., Spangenberg, J., & Mehrali, M. (2020). Hardening evolution of geopolymers from setting to equilibrium: A review. Cement and Concrete Composites, 114. doi:10.1016/j.cemconcomp.2020.103729.
Li, Z., Gao, Y., Zhang, J., Zhang, C., Chen, J., & Liu, C. (2021). Effect of particle size and thermal activation on the coal gangue based geopolymer. Materials Chemistry and Physics, 267. doi:10.1016/j.matchemphys.2021.124657.
Zhang, J., Li, S., Li, Z., Liu, C., & Gao, Y. (2020). Feasibility study of red mud for geopolymer preparation: effect of particle size fraction. Journal of Material Cycles and Waste Management, 22(5), 1328–1338. doi:10.1007/s10163-020-01023-4.
Assi, L. N., Eddie Deaver, E., & Ziehl, P. (2018). Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete. Construction and Building Materials, 167, 372–380. doi:10.1016/j.conbuildmat.2018.01.193.
ASTM C618-12a. (2017). Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-12.
SNI 03-6827-2002. (2002). Standard Test Method for Setting Time of Hydraulic Cement for Civil Engineering. National Standardization Agency of Indonesia, Jakarta, Indonesia.
ASTM C109/C109M-20b. (2021). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-20B.
Topark-Ngarm, P., Chindaprasirt, P., & Sata, V. (2015). Setting Time, Strength, and Bond of High-Calcium Fly Ash Geopolymer Concrete. Journal of Materials in Civil Engineering, 27(7), 04014198. doi:10.1061/(asce)mt.1943-5533.0001157.
Leonard Wijaya, A., Jaya Ekaputri, J., & Triwulan. (2017). Factors influencing strength and setting time of fly ash based-geopolymer paste. MATEC Web of Conferences, 138. doi:10.1051/matecconf/201713801010.
Huseien, G. F., Sam, A. R. M., Shah, K. W., Asaad, M. A., Tahir, M. M., & Mirza, J. (2019). Properties of ceramic tile waste based alkali-activated mortars incorporating GBFS and fly ash. Construction and Building Materials, 214, 355–368. doi:10.1016/j.conbuildmat.2019.04.154.
González-García, D. M., Téllez-Jurado, L., Jiménez-Álvarez, F. J., & Balmori-Ramírez, H. (2017). Structural study of geopolymers obtained from alkali-activated natural pozzolan feldspars. Ceramics International, 43(2), 2606–2613. doi:10.1016/j.ceramint.2016.11.070.
Nergis, D. D. B., Abdullah, M. M. A. B., Sandu, A. V., & Vizureanu, P. (2020). XRD and TG-DTA study of new alkali activated materials based on fly ash with sand and glass powder. Materials, 13(2), 343. doi:10.3390/ma13020343.
Amin, M., Sudibyo, S., Birawidha, D. C., Rinovian, A., Erlangga, B. D., Al Muttaqqi, M., Suka, E. G., & Pratiwi, S. (2023). Effect of bentonite on fly ash and bottom ash based engineered geopolymer composite. Riset Geologi Dan Pertambangan, 33(1), 1225. doi:10.55981/risetgeotam.2023.1225.
Derouiche, R., Zribi, M., & Baklouti, S. (2023). Study of Carbonated Clay-Based Phosphate Geopolymer: Effect of Calcite and Calcination Temperature. Minerals, 13(2), 284. doi:10.3390/min13020284.
Azimi, E. A., Abdullah, M. M. A. B., Vizureanu, P., Salleh, M. A. A. M., Sandu, A. V., Chaiprapa, J., Yoriya, S., Hussin, K., & Aziz, I. H. (2020). Strength development and elemental distribution of dolomite/fly ash geopolymer composite under elevated temperature. Materials, 13(4), 1015. doi:10.3390/ma13041015.
Rees, C. A., Provis, J. L., Lukey, G. C., & Van Deventer, J. S. J. (2007). In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir, 23(17), 9076–9082. doi:10.1021/la701185g.
Yusuf, M. O. (2023). Bond Characterization in Cementitious Material Binders Using Fourier-Transform Infrared Spectroscopy. Applied Sciences (Switzerland), 13(5), 3353. doi:10.3390/app13053353.
Zaharaki, D., Komnitsas, K., & Perdikatsis, V. (2010). Use of analytical techniques for identification of inorganic polymer gel composition. Journal of Materials Science, 45(10), 2715–2724. doi:10.1007/s10853-010-4257-2.
Toniolo, N., Taveri, G., Hurle, K., Roether, J. A., Ercole, P., Dlouhý, I., & Boccaccini, A. R. (2017). Fly-ash-based geopolymers: How the addition of recycled glass or red mud waste influences the structural and mechanical properties. Journal of Ceramic Science and Technology, 8(3), 411–419. doi:10.4416/JCST2017-00053.
Temuujin, J., van Riessen, A., & Williams, R. (2009). Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of Hazardous Materials, 167(1–3), 82–88. doi:10.1016/j.jhazmat.2008.12.121.
Lloyd, R. R., Provis, J. L., & Van Deventer, J. S. J. (2009). Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder. Journal of Materials Science, 44(2), 620–631. doi:10.1007/s10853-008-3078-z.
Feng, M., Jiang, C., Wang, Y., Zou, Y., & Zhao, J. (2023). Experimental Study on Mechanical Properties and Drying Shrinkage Compensation of Solidified Ultra-Fine Dredged Sand Blocks Made with GGBS-Based Geopolymer. Buildings, 13(7), 1750. doi:10.3390/buildings13071750.
DOI: 10.28991/CEJ-2024-010-02-06
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Bernardinus Herbudiman, Subari S, Bactiar Nugraha, Indah Pratiwi, Asnan Rinovian, Euneke Widyaningsih, Evi Dwi Yanti, Bagus D Erlangga, Jakah J, Seto Roseno
This work is licensed under a Creative Commons Attribution 4.0 International License.