Effect of Bio-Cementation with Rice Husk Ash on Permeability of Silty Sand
Abstract
Doi: 10.28991/CEJ-2023-09-11-016
Full Text: PDF
Keywords
References
Collins, R. W. (2011). Stabilization of marginal soils using geofibers and nontraditional additives. Master Thesis, University of Alaska Fairbanks, Fairbanks, United States.
Phummiphan, I., Horpibulsuk, S., Phoo-ngernkham, T., Arulrajah, A., & Shen, S.-L. (2017). Marginal Lateritic Soil Stabilized with Calcium Carbide Residue and Fly Ash Geopolymers as a Sustainable Pavement Base Material. Journal of Materials in Civil Engineering, 29(2), 04016195. doi:10.1061/(asce)mt.1943-5533.0001708.
Jan, O. Q., & Mir, B. A. (2018). Strength Behaviour of Cement Stabilised Dredged Soil. International Journal of Geosynthetics and Ground Engineering, 4(2), 1-14. doi:10.1007/s40891-018-0133-y.
Wani, K. M. N. S., & Mir, B. A. (2021). Influence of microbial geo-technology in the stabilization of dredged soils. International Journal of Geotechnical Engineering, 15(2), 235–244. doi:10.1080/19386362.2019.1643099.
Wani, K. M. N. S., & Mir, B. A. (2022). Application of Bio-Engineering for Marginal Soil Improvement: An Eco-Friendly Ground Improvement Technique. Indian Geotechnical Journal, 52(5), 1097-1115. doi:10.1007/s40098-022-00639-7.
Smith, A., Pritchard, M., Edmondson, A., & Bashir, S. (2017). The Reduction of the Permeability of a Lateritic Soil through the Application of Microbially Induced Calcite Precipitation. Natural Resources, 8(5), 337–352. doi:10.4236/nr.2017.85021.
Wani, K. M. N. S., & Mir, B. A. (2021). An Experimental Study on the Bio-cementation and Bio-clogging Effect of Bacteria in Improving Weak Dredged Soils. Geotechnical and Geological Engineering, 39(1), 317–334. doi:10.1007/s10706-020-01494-0.
Cardoso, R., Pires, I., Duarte, S. O. D., & Monteiro, G. A. (2018). Effects of clay’s chemical interactions on biocementation. Applied Clay Science, 156, 96–103. doi:10.1016/j.clay.2018.01.035.
Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2016). Significant indicators for biomineralisation in sand of varying grain sizes. Construction and Building Materials, 104, 198–207. doi:10.1016/j.conbuildmat.2015.12.023.
Arbabzadeh, E., & Cardoso, R. (2019). Efficiency of biocementation as rock joints sealing technique evaluated through permeability changes. World Congress on Civil, Structural, and Environmental Engineering (ICGRE’19), Rome, Italy. doi:10.11159/icgre19.143.
Al-Salloum, Y., Abbas, H., Sheikh, Q. I., Hadi, S., Alsayed, S., & Almusallam, T. (2017). Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar. Saudi Journal of Biological Sciences, 24(2), 286–294. doi:10.1016/j.sjbs.2016.01.016.
Ivanov, V., Chu, J., & Stabnikov, V. (2014). Iron-and calcium-based biogrouts for porous soils. Proceedings of Institution of Civil Engineers: Construction Materials, 167(1), 36–41. doi:10.1680/coma.12.00002.
Zhao, Q., Li, L., Li, C., Li, M., Amini, F., & Zhang, H. (2014). Factors Affecting Improvement of Engineering Properties of MICP-Treated Soil Catalyzed by Bacteria and Urease. Journal of Materials in Civil Engineering, 26(12), 04014094. doi:10.1061/(asce)mt.1943-5533.0001013.
Chen, Y., Han, Y., Zhang, X., Sarajpoor, S., Zhang, S., & Yao, X. (2023). Experimental study on permeability and strength characteristics of MICP-treated calcareous sand. Biogeotechnics, 1(3), 100034. doi:10.1016/j.bgtech.2023.100034.
Khaleghi, M., & Rowshanzamir, M. A. (2019). Biologic improvement of a sandy soil using single and mixed cultures: A comparison study. Soil and Tillage Research, 186, 112–119. doi:10.1016/j.still.2018.10.010.
Li, Y., Li, Y., Guo, Z., & Xu, Q. (2023). Durability of MICP-reinforced calcareous sand in marine environments: Laboratory and field experimental study. Biogeotechnics, 1(2), 100018. doi:10.1016/j.bgtech.2023.100018.
Jain, S., & Das, S. K. (2023). Influence of size and concentration of carbonate biomineral on biocementation and bioclogging for mitigating soil degradation. Biogeotechnics, 1(2), 100021. doi:10.1016/j.bgtech.2023.100021.
Tabrizi, E. M., Tohidvand, H. R., Hajialilue-Bonab, M., Mousavi, E., & Ghassemi, S. (2023). An investigation on the strain accumulation of the lightly EICP-cemented sands under cyclic traffic loads. Journal of Road Engineering, 3(2), 203–217. doi:10.1016/j.jreng.2023.03.002.
Choi, S. G., Wang, K., & Chu, J. (2016). Properties of biocemented, fiber reinforced sand. Construction and Building Materials, 120, 623–629. doi:10.1016/j.conbuildmat.2016.05.124.
Xiao, Y., He, X., Evans, T. M., Stuedlein, A. W., & Liu, H. (2019). Unconfined Compressive and Splitting Tensile Strength of Basalt Fiber–Reinforced Biocemented Sand. Journal of Geotechnical and Geoenvironmental Engineering, 145(9). doi:10.1061/(asce)gt.1943-5606.0002108.
Li, M., Li, L., Ogbonnaya, U., Wen, K., Tian, A., & Amini, F. (2016). Influence of Fiber Addition on Mechanical Properties of MICP-Treated Sand. Journal of Materials in Civil Engineering, 28(4). doi:10.1061/(asce)mt.1943-5533.0001442.
Sharma, A., & Ramkrishnan, R. (2016). Study on effect of Microbial Induced Calcite Precipitates on strength of fine grained soils. Perspectives in Science, 8, 198–202. doi:10.1016/j.pisc.2016.03.017.
Morales, L., Garzón, E., Romero, E., & Sánchez-Soto, P. J. (2019). Microbiological induced carbonate (CaCO3) precipitation using clay phyllites to replace chemical stabilizers (Cement or Lime). Applied Clay Science, 174, 15–28. doi:10.1016/j.clay.2019.03.018.
Bindu, J., Kannan, K., & Sajana, S. Biocementation in Marine Clays: Effect on Grain Size Distribution. Indian Geotechnical Conference 2017, 14-16 December, 2017, IIT Guwahati, India.
Sidik, W. S., Canakci, H., Kilic, I. H., & Celik, F. (2014). Applicability of biocementation for organic soil and its effect on permeability. Geomechanics and Engineering, 7(6), 649–663. doi:10.12989/gae.2014.7.6.649.
Canakci, H., Sidik, W., & Halil Kilic, I. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55(5), 1211–1221. doi:10.1016/j.sandf.2015.09.020.
Cheng, L., & Shahin, M. (2017). Bacteria induced cementation for soil stabilization. Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, 17-22 September, 2017, Seoul, Korea..
Choi, S.-G., Wu, S., & Chu, J. (2016). Biocementation for Sand Using an Eggshell as Calcium Source. Journal of Geotechnical and Geoenvironmental Engineering, 142(10), 06016010. doi:10.1061/(asce)gt.1943-5606.0001534.
Dayakar, P., Raman, K. V., Arunya, A., & Venkatakrishnaiah, R. (2019). Study on strength properties of sand by biocementation with eggshell. International Journal of Civil Engineering and Technology, 10(1), 2770–2785.
Rathan Raj, R., Banupriya, S., & Dharani, R. (2016). Stabilization of soil using rice husk ash. International Journal of Computing Engineering Research, 6(2), 43-50.
Adhikary, S., & Jana, K. (2016). Potentials of rice husk ash as a soil stabilizer. International Journal of Latest Research in Engineering and Technology, 2(2), 40-42.
Roy, A. (2014). Soil stabilization using rice husk ash and cement. International Journal of Civil Engineering Research, 5(1), 49-54.
Oyediran, I. A., & Ayeni, O. O. (2020). Comparative effect of microbial induced calcite precipitate, cement and rice husk ash on the geotechnical properties of soils. SN Applied Sciences, 2(7), 1157. doi:10.1007/s42452-020-2956-0.
Nemati, M., Greene, E. A., & Voordouw, G. (2005). Permeability profile modification using bacterially formed calcium carbonate: Comparison with enzymic option. Process Biochemistry, 40(2), 925–933. doi:10.1016/j.procbio.2004.02.019.
Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417–423. doi:10.1080/01490450701436505.
DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197–210. doi:10.1016/j.ecoleng.2008.12.029.
Qabany, A. A., & Soga, K. (2013). Session 2: Bio-chemo-mechanical aspects in geomechanics. Geotechnique, 63(4), 331-339. doi:10.1680/geot.SIP13.P.022.
Yadu, L., Tripathi, R. K. & Singh, D. (2011). Comparison of fly ash and rice husk ash htabilized black cotton soil. International Journal of Earth Sciences and Engineering, 4(6), 42–45.
DOI: 10.28991/CEJ-2023-09-11-016
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Martina Gumsar Sorum
This work is licensed under a Creative Commons Attribution 4.0 International License.