Analysis and Prediction of Tidal Measurement Data from Temporary Stations using the Least Squares Method
Downloads
Doi: 10.28991/CEJ-2024-010-02-03
Full Text: PDF
Downloads
[2] Heidarzadeh, M., Muhari, A., & Wijanarto, A. B. (2019). Insights on the Source of the 28 September 2018 Sulawesi Tsunami, Indonesia Based on Spectral Analyses and Numerical Simulations. Pure and Applied Geophysics, 176(1), 25–43. doi:10.1007/s00024-018-2065-9.
[3] Cai, S., Liu, L., & Wang, G. (2018). Short-term tidal level prediction using normal time-frequency transform. Ocean Engineering, 156, 489–499. doi:10.1016/j.oceaneng.2018.03.021.
[4] Putera, F. H. A., & Sallata, A. E. (2015). Economic Valuation of Resources in Palu Bay, Palu City, Central Sulawesi Province. Journal of Maritime and Fisheries Socio-Economic Policy, 5(2), 83. doi:10.15578/jksekp.v5i2.1019. (In Indonesian).
[5] Tjaija, A., Ali, M. N., Fadhliah, & Effendy. (2022). Development Strategy of Palu Bay Marine of Sustainable Tourism with the A'WOT Hybrid Method. Academic Journal of Interdisciplinary Studies, 11(1), 269–279. doi:10.36941/ajis-2022-0024.
[6] Paulik, R., Gusman, A., Williams, J. H., Pratama, G. M., Lin, S. lin, Prawirabhakti, A., Sulendra, K., Zachari, M. Y., Fortuna, Z. E. D., Layuk, N. B. P., & Suwarni, N. W. I. (2019). Tsunami Hazard and Built Environment Damage Observations from Palu City after the September 28 2018 Sulawesi Earthquake and Tsunami. Pure and Applied Geophysics, 176(8), 3305–3321. doi:10.1007/s00024-019-02254-9.
[7] ICSM (2021). Australian Tides Manual. Intergovernmental Committee on Surveying and Mapping (ICSM), Melbourne, Australia.
[8] Gill, S. K., & Schultz, J. R. (2000). Tidal Datums and Their Applications. Silver Spring, Department of Commerce, Maryland, United States.
[9] Cartwright, D. E., & Edden, A. C. (1973). Corrected Tables of Tidal Harmonics. Geophysical Journal of the Royal Astronomical Society, 33(3), 253–264. doi:10.1111/j.1365-246X.1973.tb03420.x.
[10] Parker, B. B. (2007). Tidal analysis and prediction. Silver Spring, Department of Commerce, Maryland, United States.
[11] Forrester, W. D. (1983). Canadian Tide Manual. Department of Fisheries and Oceans, Canadian Hydrographic Service, Ottawa, Canada.
[12] Schureman, P. (1994). Manual of harmonic analysis and prediction of tides (No. 98). US Department of Commerce, Coast and Geodetic Survey, Washington, United States.
[13] Horn, W. (1960). Some recent approaches to tidal problems. The International Hydrographic Review, XXXVII, No. 2, 65-88
[14] Harris, D. L., Pore, N. A., & Cummings, R. A. (1965). Tide and tidal current prediction by high speed digital computer. The International Hydrographic Review, 95-103
[15] Zetler, B. D. (1982). Computer applications to tides in the national ocean survey (No. 98). National Oceanic and Atmospheric Administration, National Ocean Survey, Silver Spring, Maryland, United States.
[16] Foreman, M. G. G. (1977). Manual for tidal heights analysis and prediction. Institute of Ocean Sciences, Patricia Bay, British Columbia, Canada.
[17] Ali, A. F. D. H., Rosli, R., & Basunia, M. A. (2023). Tidal harmonics in Brunei coastal water. AIP Conference Proceedings. doi:10.1063/5.0111545.
[18] Mousavian, R., & Hossainali, M. M. (2012). Detection of main tidal frequencies using least squares harmonic estimation method. Journal of Geodetic Science, 2(3), 224–233. doi:10.2478/v10156-011-0043-6.
[19] Boon, J. D., & Kiley, K. P. (1978). Harmonic analysis and tidal prediction by the method of least squares: A user's manual. Virginia Institute of Marine Science, Virginia, United States.
[20] Yen, P.-H., Jan, C.-D., Lee, Y.-P., & Lee, H.-F. (1996). Application of Kalman Filter to Short-Term Tide Level Prediction. Journal of Waterway, Port, Coastal, and Ocean Engineering, 122(5), 226–231. doi:10.1061/(asce)0733-950x(1996)122:5(226).
[21] Ahmed, A. A. M., Jui, S. J. J., AL-Musaylh, M. S., Raj, N., Saha, R., Deo, R. C., & Saha, S. K. (2024). Hybrid deep learning model for wave height prediction in Australia's wave energy region. Applied Soft Computing, 150, 111003. doi:10.1016/j.asoc.2023.111003.
[22] Pan, H., Xu, T., & Wei, Z. (2023). A modified tidal harmonic analysis model for short-term water level observations. Ocean Modelling, 186, 102251. doi:10.1016/j.ocemod.2023.102251.
[23] Meena, B. L., & Agrawal, J. D. (2015). Tidal level forecasting using ANN. Procedia Engineering, 116(1), 607–614. doi:10.1016/j.proeng.2015.08.332.
[24] Abubakar, A. G., Mahmud, M. R., Tang, K. K. W., Hussaini, A., & Md Yusuf, N. H. (2019). A Review of Modelling Approaches on Tidal Analysis and Prediction. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W16, 23–34. doi:10.5194/isprs-archives-xlii-4-w16-23-2019.
[25] Li, S., Liu, L., Cai, S., & Wang, G. (2019). Tidal harmonic analysis and prediction with least-squares estimation and inaction method. Estuarine, Coastal and Shelf Science, 220, 196–208. doi:10.1016/j.ecss.2019.02.047.
[26] Setiyawan, Rusdin, A., Amaliah, T., & Olphino. (2022). Potential of tidal power plants on Tibo Beach with spektrum method. IOP Conference Series: Materials Science and Engineering, 1212(1), 012039. doi:10.1088/1757-899x/1212/1/012039.
[27] Sabhan, S., Badaruddin, Kurniawan, M., & Rusydi, M. (2021). Tidal and bathymetry characteristics after the 2018 earthquake and tsunami in Watusampu Waters, Palu Bay, Central Sulawesi. Natural Science: Journal of Science and Technology, 10(1), 26–30. doi:10.22487/25411969.2021.v10.i1.15505.
[28] Susanto, R. D., Gordon, A. L., Sprintall, J., & Herunadi, B. (2000). Intraseasonal Variability and Tides in Makassar Strait. Geophysical Research Letters, 27(10), 1499–1502. doi:10.1029/2000GL011414.
[29] Thomson, R. E., & Emery, W. J. (2014). Data Analysis Methods in Physical Oceanography (3rd Ed.). Elsevier Science, Amsterdam, Netherlands. doi:10.1016/C2010-0-66362-0.
[30] Hall, P., & Davies, A. M. (2005). The influence of sampling frequency, non-linear interaction, and frictional effects upon the accuracy of the harmonic analysis of tidal simulations. Applied Mathematical Modelling, 29(6), 533–552. doi:10.1016/j.apm.2004.09.015.
[31] UNESCO/IOC. (2006). Manual on Sea-level Measurements and Interpretation, Volume IV: Intergovernmental Oceanographic Commission of UNESCO, Paris, France.
[32] Vassie, J. M., Woodworth, P. L., & Holt, M. W. (2004). An example of North Atlantic deep-ocean swell impacting ascension and St. Helena Islands in the Central South Atlantic. Journal of Atmospheric and Oceanic Technology, 21(7), 1095–1103. doi:10.1175/1520-0426(2004)021<1095:AEONAD>2.0.CO;2.
[33] Joseph, A., Desa, E., Desa, E., Smith, D., Peshwe, V. B., Vijaykumar, & Desa, J. A. E. (1999). Evaluation of pressure transducers under turbid natural waters. Journal of Atmospheric and Oceanic Technology, 16(8), 1150–1155. doi:10.1175/1520-0426(1999)016<1150:EOPTUT>2.0.CO;2.
[34] Mehra, P., Prabhudesai, R. G., Joseph, A., Vijaykumar, Agarvadekar, Y., Luis, R., Damodaran, S., & Viegas, B. (2009). A one year comparison of radar and pressure tide gauge at Goa, west coast of India. 2009 International Symposium on Ocean Electronics, SYMPOL 2009, 173–183. doi:10.1109/SYMPOL.2009.5664190.
[35] Madah, F. A. (2020). The amplitudes and phases of tidal constituents from Harmonic Analysis at two stations in the Gulf of Aden. Earth Systems and Environment, 4(2), 321–328. doi:10.1007/s41748-020-00152-y.
[36] US Coast and Geodetic Survey. (1965). Manual of tide observations. Publication 30-1. Special publication No. 196. Washington, United States.
[37] SNI 7924:2013. (2013). Tidal station installation. Badan Standarisasi Nasional, Jakarta, Indonesia. (In Indonesian).
[38] Arianty, N., Mudin, Y., & Rahman, A. (2017). Modeling of wave refraction and analysis of ocean wave characteristics in Palu Bay Waters. Gravitasi. 16 (2), 23–30.
[39] SNI 7963:2014. (2014). Tidal Observation. Badan Standardisasi Nasional, Jakarta, Indonesia. (In Indonesian).
[40] Foreman, M. G. G., & Henry, R. F. (1989). The harmonic analysis of tidal model time series. Advances in Water Resources, 12(3), 109–120. doi:10.1016/0309-1708(89)90017-1.
[41] Annunziato, A., & Probst, P. (2016). Continuous Harmonics Analysis of Sea Level Measurements: Description of a new method to determine sea level measurement tidal component. Publications Office of the European Union, Luxembourg, Luxembourg. doi:10.2788/4295.
[42] Stephenson, A. G. (2016). Harmonic analysis of tides using Tide Harmonics. The Comprehensive R Archive Network (CRAN). Available online: https://cran.biotools.fr/web/packages/TideHarmonics/vignettes/austides.pdf (accessed on June 2023).
[43] Moore, R. A. (2020). Characterization of Seasonal Variability in Tides. Department of Mathematics, The University of Utah, Salt Lake City, United States.
[44] Abubakar, A. G., Mahmud, M. R., Tang, K. K. W., & Husaaini, A. (2021). The Determination of Tidal Constituents using Wavelet Base Harmonic at The Strait of Malacca. IOP Conference Series: Earth and Environmental Science, 731, 012001. doi:10.1088/1755-1315/731/1/012001.
[45] Doodson, A. T., & Lamb, H. (1921). The harmonic development of the tide-generating potential. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 100(704), 305–329. doi:10.1098/rspa.1921.0088.
[46] Chelton, D. B., & Enfield, D. B. (1986). Ocean signals in tide gauge records. Journal of Geophysical Research: Solid Earth, 91(B9), 9081–9098. doi:10.1029/jb091ib09p09081.
[47] Zetler, B. D., & Cummings, R. A. (1967). A harmonic method for predicting shallow-water tides. Journal of Marine Research, 25(1), 103–114.
[48] Rossiter, J. R., & Lennon, G. W. (1968). An Intensive Analysis of Shallow Water Tides. Geophysical Journal of the Royal Astronomical Society, 16(3), 275–293. doi:10.1111/j.1365-246X.1968.tb00223.x.
[49] Hanxing, X. (1984). A method for prediction of shallow water tides. Chinese Journal of Oceanology and Limnology, 2(1), 34–48. doi:10.1007/BF02888390.
[50] Godin, G., & Taylor, J. (1973). A simple method for the prediction of the time and height of high and low water. The International Hydrographic Review, 50(2), 75-81.
[51] Pugh, D. (1987) Tides, Surges and Mean Sea Level: A Handbook for Engineers and Scientists. John Wiley & Sons, Hoboken, United States.
[52] Byun, D. S., & Hart, D. E. (2020). A monthly tidal envelope classification for semidiurnal regimes in terms of the relative proportions of the S2, N2, and M2 constituents. Ocean Science, 16(4), 965–977. doi:10.5194/os-16-965-2020.
[53] Byun, D. S., Hart, D. E., Kim, S., & Ha, J. (2023). Classification of monthly tidal envelopes in mixed tide regimes. Scientific Reports, 13(1), 4786. doi:10.1038/s41598-023-31657-x.
[54] Van der Stok, J. P. (1897). Wind and weather, currents, tides and tidal streams in the East Indian archipelago. G.P.O. Universiteitsbibliotheek Utrecht, Utrecht, Netherlands.
[55] Courtier, A. (1939). Classification of tides in four types. The International Hydrographic Review, 50-58
[56] Parker, B. B. (1977). Tidal hydrodynamics in the Strait of Juan de Fuca--Strait of Georgia (No. 69). Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Survey, Silver Spring, Maryland, United States.
[57] Amin, M. (1986). On the conditions for classification of tides. The International Hydrographic Review, 63(1), 161-174.
[58] Daher, V. B., Paes, R. C. de O. V., França, G. B., Alvarenga, J. B. R., & Teixeira, G. L. G. (2015). Extraction of tide constituents by harmonic analysis using altimetry satellite data in the Brazilian coast. Journal of Atmospheric and Oceanic Technology, 32(3), 614–626. doi:10.1175/JTECH-D-14-00091.1.
[59] Lee, S. H., & Chang, Y. S. (2019). Classification of the Global Tidal Types Based on Auto-correlation Analysis. Ocean Science Journal, 54(2), 279–286. doi:10.1007/s12601-019-0009-7.
[60] Wright, E., Keller, J., Gallagher, D., & Ladd, D. (2023). Moon Phase and Libration, 2014. NASA's Goddard Space Flight Center Scientific Visualization Studio, NASA, Washington, United States.
[61] Hicks, S. D. (2006). Understanding tides. US Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, United States.
[62] Parker, B. (2005). Tides. Encyclopedia of Coastal Science Encyclopedia of Earth Science Series. Springer, Cham, Switzerland.
[63] Crawford, W. R. (1982). Analysis of fortnightly and monthly tides. The International Hydrographic Review, 59(1), 131-142.
[64] Ris, R. C., Holthuijsen, L. H., & Booij, N. (1999). A third-generation wave model for coastal regions 2. Verification. Journal of Geophysical Research: Oceans, 104(C4), 7667–7681. doi:10.1029/1998jc900123.
[65] Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J. F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J. M., Aouf, L., & Collard, F. (2010). Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. Journal of Physical Oceanography, 40(9), 1917–1941. doi:10.1175/2010JPO4324.1.
[66] Akpinar, A., van Vledder, G. P., Kömürcü, M. I., & Özger, M. (2012). Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea. Continental Shelf Research, 50–51, 80–99. doi:10.1016/j.csr.2012.09.012.
[67] Mentaschi, L., Besio, G., Cassola, F., & Mazzino, A. (2013). Problems in RMSE-based wave model validations. Ocean Modelling, 72, 53–58. doi:10.1016/j.ocemod.2013.08.003.
[68] Bryant, M. A., Hesser, T. J., & Jensen, R. E. (2016). Evaluation statistics computed for the wave information studies (WIS). Army Engineer Research and Development Center, Vicksburg, United States.
[69] Ding, Y., Ding, T., Rusdin, A., Zhang, Y., & Jia, Y. (2020). Simulation and Prediction of Storm Surges and Waves Using a Fully Integrated Process Model and a Parametric Cyclonic Wind Model. Journal of Geophysical Research: Oceans, 125(7), 1-31. doi:10.1029/2019JC015793.
[70] Yang, C. H., Wu, C. H., & Hsieh, C. M. (2020). Long Short-Term Memory Recurrent Neural Network for Tidal Level Forecasting. IEEE Access, 8, 159389–159401. doi:10.1109/ACCESS.2020.3017089.
[71] Bradbury, M. C., & Conley, D. C. (2021). Using artificial neural networks for the estimation of subsurface tidal currents from high-frequency radar surface current measurements. Remote Sensing, 13(19). doi:10.3390/rs13193896.
[72] Zhang, A., Lin, Y., Sun, Y., Yuan, H., Wang, M., Liu, G., & Hu, Y. (2022). Tidal current prediction based on fractal theory and improved least squares support vector machine. IET Renewable Power Generation, 16(2), 389–401. doi:10.1049/rpg2.12335.
[73] Kusuma, H. A., Lubis, M. Z., Oktaviani, N., & Setyono, D. E. D. (2021). Tides Measurement and Tidal Analysis at Jakarta Bay. Journal of Applied Geospatial Information, 5(2), 494–501. doi:10.30871/jagi.v5i2.2779.
[74] Palmer, K., Watson, C. S., Hunter, J. R., Hague, B. S., & Power, H. E. (2023). An improved method for computing tidal datums. Coastal Engineering, 184, 104354. doi:10.1016/j.coastaleng.2023.104354.
[75] Masselink, G., & Short, A. D. (1993). The effect of tide range on beach morphodynamics and morphology: a conceptual beach model. Journal of coastal research, 785-800.
[76] Djunarsjah, E., Nusantara, C. A. D. S., Putra, A. P., Wijaya, R. A., Sianturi, S. S., Anantri, N. M. K., Kusumadewi, D., & Julian, M. M. (2023). Prospects and Constraints of Lowest Astronomical Tide (LAT) as Determination of Sea Boundaries in Indonesia. The Egyptian Journal of Aquatic Research, 49(4), 444–451. doi:10.1016/j.ejar.2023.08.002.
[77] ICSM. (2005). The Factors Contributing to the level of Confidence in the Tidal Predictions Accuracy of Tidal Predictions. Intergovernmental Committee on Surveying and Mapping (ICSM), Sydney, Australia.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.