Estimation of the Physical Progress of Work Using UAV and BIM in Construction Projects

Jose Manuel Palomino Ojeda, Lenin Quiñones Huatangari, Billy Alexis Cayatopa Calderon, José Luis Piedra Tineo, Christiaan Zayed Apaza Panca, Manuel Emilio Milla Pino


The delay in the physical progress of construction creates additional costs, missed deadlines, and quality issues. The research aimed to estimate the physical progress of the project by using unmanned aerial vehicles (UAVs) and building information modeling (BIM). The methodology comprised capturing 848 high-resolution images of the Civil Engineering Laboratory construction site at the National University of Jaen, Cajamarca, Peru, using the Phantom 4 RTK drone. The photographs were processed using Agisoft 2.0.1 software, resulting in a point cloud. This was then imported into ReCap Pro 2023 software, which was used to assess the quality of the points. The Revit 2023 software was subsequently utilized to establish the phase parameters, linking the BIM model with the point cloud, filtering the model, and eventually exporting it to the Power BI 2023 software. The work's estimated progress utilizing the proposed methodology was 42.82%, which was not statistically significant compared to the Public Works Information System (INFOBRAS) of 43.14%. This allows for the automation of customary processes, the identification of crucial issues, and prompt decision-making. The study's originality lies in the suggestion of integrating aerial imagery with drones and BIM modeling for the real-time and precise estimation of work progression. This method provides a precise and effective substitute for traditional techniques for gauging the tangible advancement of projects.


Doi: 10.28991/CEJ-2024-010-02-02

Full Text: PDF


BIM; Construction Automation; Construction Progress; Project Management; UAV.


Fonseca Arenas, N., & Shafique, M. (2023). Recent progress on BIM-based sustainable buildings: State of the art review. Developments in the Built Environment, 15, 100176. doi:10.1016/j.dibe.2023.100176.

Awed, A. M., Maher, A., Abozied, M. A. H., & Elhalwagy, Y. Z. (2023). Towards realizing a visual UAV flying environment: A novel approach based aerial imagery to construct a dataset for visual servoing. Engineering Applications of Artificial Intelligence, 122, 106098. doi:10.1016/j.engappai.2023.106098.

Jiang, W., Zhou, Y., Ding, L., Zhou, C., & Ning, X. (2020). UAV-based 3D reconstruction for hoist site mapping and layout planning in petrochemical construction. Automation in Construction, 113, 103137. doi:10.1016/j.autcon.2020.103137.

Li, F., Laili, Y., Chen, X., Lou, Y., Wang, C., Yang, H., Gao, X., & Han, H. (2023). Towards big data driven construction industry. Journal of Industrial Information Integration, 35, 100483. doi:10.1016/j.jii.2023.100483.

Elkhapery, B., Pěnička, R., Němec, M., & Siddiqui, M. (2023). Metaheuristic planner for cooperative multi-agent wall construction with UAVs. Automation in Construction, 152, 104908. doi:10.1016/j.autcon.2023.104908.

Pan, Y., & Zhang, L. (2021). Automated process discovery from event logs in BIM construction projects. Automation in Construction, 127, 103713. doi:10.1016/j.autcon.2021.103713.

Alizadehsalehi, S., & Yitmen, I. (2016). The Impact of Field Data Capturing Technologies on Automated Construction Project Progress Monitoring. Procedia Engineering, 161, 97–103. doi:10.1016/j.proeng.2016.08.504.

Song, C., Chen, Z., Wang, K., Luo, H., & Cheng, J. C. P. (2022). BIM-supported scan and flight planning for fully autonomous LiDAR-carrying UAVs. Automation in Construction, 142, 104533. doi:10.1016/j.autcon.2022.104533.

Siebert, S., & Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Automation in Construction, 41, 1–14. doi:10.1016/j.autcon.2014.01.004.

Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2022). Unmanned Aerial Vehicle (UAV) manipulation assisted by Augmented Reality (AR): The case of a drone. IFAC-PapersOnLine, 55(10), 983–988. doi:10.1016/j.ifacol.2022.09.483.

Matlekovic, L., Juric, F., & Schneider-Kamp, P. (2022). Microservices for autonomous UAV inspection with UAV simulation as a service. Simulation Modelling Practice and Theory, 119, 102548. doi:10.1016/j.simpat.2022.102548.

Alam, M. M., & Moh, S. (2022). Joint topology control and routing in a UAV swarm for crowd surveillance. Journal of Network and Computer Applications, 204, 103427. doi:10.1016/j.jnca.2022.103427.

Nwaogu, J. M., Yang, Y., Chan, A. P. C., & Chi, H. (2023). Application of drones in the architecture, engineering, and construction (AEC) industry. Automation in Construction, 150, 104827. doi:10.1016/j.autcon.2023.104827.

Zhang, J., Xu, S., Zhao, Y., Sun, J., Xu, S., & Zhang, X. (2023). Aerial orthoimage generation for UAV remote sensing: Review. Information Fusion, 89, 91–120. doi:10.1016/j.inffus.2022.08.007.

Chen, Q., Chen, J., & Huang, W. (2022). Pathfinding method for an indoor drone based on a BIM-semantic model. Advanced Engineering Informatics, 53, 101686. doi:10.1016/j.aei.2022.101686.

Meyer, T., Brunn, A., & Stilla, U. (2023). Geometric BIM verification of indoor construction sites by photogrammetric point clouds and evidence theory. ISPRS Journal of Photogrammetry and Remote Sensing, 195, 432–445. doi:10.1016/j.isprsjprs.2022.12.014.

Meyer, T., Brunn, A., & Stilla, U. (2022). Change detection for indoor construction progress monitoring based on BIM, point clouds and uncertainties. Automation in Construction, 141, 104442. doi:10.1016/j.autcon.2022.104442.

Reja, V. K., Varghese, K., & Ha, Q. P. (2022). Computer vision-based construction progress monitoring. Automation in Construction, 138, 104245. doi:10.1016/j.autcon.2022.104245.

Sheikhkhoshkar, M., Pour Rahimian, F., Kaveh, M. H., Hosseini, M. R., & Edwards, D. J. (2019). Automated planning of concrete joint layouts with 4D-BIM. Automation in Construction, 107, 102943. doi:10.1016/j.autcon.2019.102943.

Abuaddous, M., Al-Btoosh, J. A. A., Al-Btoush, M. A. K. A., & Alkherret, A. J. (2020). Building Information Modeling Strategy in Mitigating Variation Orders in Roads Projects. Civil Engineering Journal, 6(10), 1974–1982. doi:10.28991/cej-2020-03091596.

Kiriiak, N. (2021). Development and implementation of technical decision for digital support of construction using photogrammetry methods. Nuclear Engineering and Design, 381, 111366. doi:10.1016/j.nucengdes.2021.111366.

Melo, R. R. S. de, Costa, D. B., Álvares, J. S., & Irizarry, J. (2017). Applicability of unmanned aerial system (UAS) for safety inspection on construction sites. Safety Science, 98, 174–185. doi:10.1016/j.ssci.2017.06.008.

Ellenberg, A., Kontsos, A., Moon, F., & Bartoli, I. (2016). Bridge related damage quantification using unmanned aerial vehicle imagery. Structural Control and Health Monitoring, 23(9), 1168–1179. Portico.

Huang, H., Long, J., Lin, H., Zhang, L., Yi, W., & Lei, B. (2017). Unmanned aerial vehicle based remote sensing method for monitoring a steep mountainous slope in the Three Gorges Reservoir, China. Earth Science Informatics, 10(3), 287–301. doi:10.1007/s12145-017-0291-9.

Rengaraju, P., Pandian, S. R., & Lung, C.-H. (2014). Communication networks and non-technical energy loss control system for smart grid networks. 2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), Kuala Lumpur, Malaysia. doi:10.1109/isgt-asia.2014.6873828.

Jones, D. I. (2007, June). An experimental power pick-up mechanism for an electrically driven UAV. 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain. doi:10.1109/isie.2007.4374920.

Wei, W., Lu, Y., Lin, Y., Bai, R., Zhang, Y., Wang, H., & Li, P. (2023). Augmenting progress monitoring in soil-foundation construction utilizing SOLOv2-based instance segmentation and visual BIM representation. Automation in Construction, 155, 105048. doi:10.1016/j.autcon.2023.105048.

Kamari, M., & Ham, Y. (2022). AI-based risk assessment for construction site disaster preparedness through deep learning-based digital twinning. Automation in Construction, 134, 104091. doi:10.1016/j.autcon.2021.104091.

Zhang, C., Wang, F., Zou, Y., Dimyadi, J., Guo, B. H. W., & Hou, L. (2023). Automated UAV image-to-BIM registration for building façade inspection using improved generalised Hough transform. Automation in Construction, 153, 104957. doi:10.1016/j.autcon.2023.104957.

Jia, S., Liu, C., Guan, X., Wu, H., Zeng, D., & Guo, J. (2022). Bidirectional interaction between BIM and construction processes using a multisource geospatial data enabled point cloud model. Automation in Construction, 134, 104096. doi:10.1016/j.autcon.2021.104096.

Han, K. K., Cline, D., & Golparvar-Fard, M. (2015). Formalized knowledge of construction sequencing for visual monitoring of work-in-progress via incomplete point clouds and low-LoD 4D BIMs. Advanced Engineering Informatics, 29(4), 889–901. doi:10.1016/j.aei.2015.10.006.

Dupont, Q. F. M., Chua, D. K. H., Tashrif, A., & Abbott, E. L. S. (2017). Potential Applications of UAV along the Construction’s Value Chain. Procedia Engineering, 182, 165–173. doi:10.1016/j.proeng.2017.03.155.

Sampaio, A. Z. (2023). BIM training course improving skills of Construction industry professionals. Procedia Computer Science, 219, 2035–2042. doi:10.1016/j.procs.2023.01.505.

Mohammad El-Basioni, B. M., & Abd El-Kader, S. M. (2023). Mission-based PTR triangle for multi-UAV systems flight planning. Ad Hoc Networks, 142, 103115. doi:10.1016/j.adhoc.2023.103115.

Jain, G., Yadav, G., Prakash, D., Shukla, A., & Tiwari, R. (2019). MVO-based path planning scheme with coordination of UAVs in 3-D environment. Journal of Computational Science, 37, 101016. doi:10.1016/j.jocs.2019.07.003.

Bori, M. M., & Hussein, Z. E. (2020). Integration the Low Cost Camera Images with the Google Earth Dataset to Create a 3D Model. Civil Engineering Journal, 6(3), 446–458. doi:10.28991/cej-2020-03091482.

Ham, Y., Han, K. K., Lin, J. J., & Golparvar-Fard, M. (2016). Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works. Visualization in Engineering, 4(1), 1-8. doi:10.1186/s40327-015-0029-z.

Han, Y., Feng, D., Wu, W., Yu, X., Wu, G., & Liu, J. (2023). Geometric shape measurement and its application in bridge construction based on UAV and terrestrial laser scanner. Automation in Construction, 151, 104880. doi:10.1016/j.autcon.2023.104880.

Tan, Y., Li, G., Cai, R., Ma, J., & Wang, M. (2022). Mapping and modelling defect data from UAV captured images to BIM for building external wall inspection. Automation in Construction, 139, 104284. doi:10.1016/j.autcon.2022.104284.

Jeelani, I., & Gheisari, M. (2021). Safety challenges of UAV integration in construction: Conceptual analysis and future research roadmap. Safety Science, 144, 105473. doi:10.1016/j.ssci.2021.105473.

Pour Rahimian, F., Seyedzadeh, S., Oliver, S., Rodriguez, S., & Dawood, N. (2020). On-demand monitoring of construction projects through a game-like hybrid application of BIM and machine learning. Automation in Construction, 110, 103012. doi:10.1016/j.autcon.2019.103012.

Freimuth, H., & König, M. (2018). Planning and executing construction inspections with unmanned aerial vehicles. Automation in Construction, 96, 540–553. doi:10.1016/j.autcon.2018.10.016.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-02-02


  • There are currently no refbacks.

Copyright (c) 2024 Jose Manuel Palomino Ojeda, Lenin Quiñones Huatangari, Billy Alexis Cayatopa Calderon, José Luis Piedra Tineo, Christiaan Zayed Apaza Panca, Manuel Emilio Milla Pino

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.