Rice Self-Sufficiency and Optimization of Irrigation by Using System Dynamic

. Asmelita, Lily M. Limantara, M. Bisri, Widandi Soetopo, Indra Farni


This research intends to optimize the results of irrigation canals with the conversion of function to fisheries without reducing rice self-sufficiency regionally. However, irrigation is an infrastructure asset that needs to be used optimally. It is due to the water; water sources and irrigation infrastructure can provide more benefits to rice fields, which are to function as fisheries in the study location (West Sumatra Province). The aim of this research is to propose the optimal combinations of irrigated land planted with rice and those in the form of fisheries. The methodology uses System Dynamics due to the official BPS data. There are many tools that are used in this system dynamics approach, such as causal diagrams, archetype systems, diagrams of stock and flow, and the behavior of over-time graphs. The DSS generator for simulating the program in this study uses Stella, which is a new paradigm in the water resources system approach. The result shows that the potential increase in income that could be obtained by converting the rice fields to tilapia fisheries is about 126 million Rupiah per year per hectare. West Sumatra Province, as a national rice granary, has many districts that are more self-sufficient in rice, so it can be considered to utilize irrigation to become the irrigation for fisheries. The potential of rice fields that can be converted into fisheries while maintaining self-sufficiency in rice at the district/city level of West Sumatra Province is more than 61 thousand hectares, and it generates an increase in income of about 7.7 trillion per year.


Doi: 10.28991/CEJ-2024-010-02-010

Full Text: PDF


Water Resources System; Irrigation Optimization; Fisheries; Rice Self-Sufficiency; Aquaculture; System Dynamics.


Hamilton-Hart, N. (2019). Indonesia’s Quest for Food Self-sufficiency: A New Agricultural Political Economy? Journal of Contemporary Asia, 49(5), 734–758. doi:10.1080/00472336.2019.1617890.

Rozaki, Z. (2021). Food security challenges and opportunities in Indonesia post COVID-19. Advances in Food Security and Sustainability, 119–168. doi:10.1016/bs.af2s.2021.07.002.

Purwadi, H., Montarcih Limantara, L., Suhartanto, E., & Rispiningtati. (2020). Optimization of Water Distribution to Support the Balance of Water Usage: A Case Study of the Sempor Irrigation System, Central Java, Indonesia. IOP Conference Series: Earth and Environmental Science, 437, 012030. doi:10.1088/1755-1315/437/1/012030.

Wang, F., Chen, Y., Li, Z., Fang, G., Li, Y., & Xia, Z. (2019). Assessment of the irrigation water requirement and water supply risk in the Tarim River Basin, Northwest China. Sustainability (Switzerland), 11(18), 4941. doi:10.3390/su11184941.

Ding, Z., Gong, W., Li, S., & Wu, Z. (2018). System dynamics versus agent-based modeling: A review of complexity simulation in construction waste management. Sustainability (Switzerland), 10(7), 2484. doi:10.3390/su10072484.

Dolgui, A., Ivanov, D., & Rozhkov, M. (2020). Does the ripple effect influence the bullwhip effect? An integrated analysis of structural and operational dynamics in the supply chain. International Journal of Production Research, 58(5), 1285–1301. doi:10.1080/00207543.2019.1627438.

Olivares-Aguila, J., & El-Maraghy, W. (2021). System dynamics modelling for supply chain disruptions. International Journal of Production Research, 59(6), 1757–1775. doi:10.1080/00207543.2020.1725171.

Hiver, P., Al-Hoorie, A. H., & Larsen-Freeman, D. (2021). Toward a transdisciplinary integration of research purposes and methods for complex dynamic systems theory: beyond the quantitative–qualitative divide. International Review of Applied Linguistics in Language Teaching, 60(1), 7–22. doi:10.1515/iral-2021-0022.

Rathore, R., Thakkar, J. J., & Jha, J. K. (2020). Impact of risks in foodgrains transportation system: a system dynamics approach. International Journal of Production Research, 59(6), 1814–1833. doi:10.1080/00207543.2020.1725683.

Hiver, P., Al-Hoorie, A. H., & Evans, R. (2022). Complex Dynamic Systems Theory in Language Learning. Studies in Second Language Acquisition, 44(4), 913–941. doi:10.1017/S0272263121000553.

Radhika & Hatmoko, W. (2017). Study of controlling irrigation land conversion using a system dynamics approach. Land Conversion Anthology: Food (in) Security, 109–122. Andi, Sleman, Indonesia.

Ibrahim, L. A., Abu-Hashim, M., Shaghaleh, H., Elsadek, E., Hamad, A. A. A., & Alhaj Hamoud, Y. (2023). A Comprehensive Review of the Multiple Uses of Water in Aquaculture-Integrated Agriculture Based on International and National Experiences. Water (Switzerland), 15(2), 367. doi:10.3390/w15020367.

Asmelita, Limantara, L. M., Bisri, M., Soetopo, W., & Farni, I. (2022). Allocation of Existing Water Irrigation in Panti Rao. Journal of Southwest Jiaotong University, 57(3), 355–362. doi:10.35741/issn.0258-2724.57.3.29.

Asmelita, Limantara, L. M., Bisri, M., Soetopo, W., & Farni, I. (2022). Dynamics System Model for the Optimization of Irrigation Water Allocation. Journal of Hunan University Natural Sciences, 49(12), 45–55. doi:10.55463/issn.1674-2974.49.12.5.

Pueppke, S. G., Nurtazin, S., & Ou, W. (2020). Water and land as shared resources for agriculture and aquaculture: Insights from asia. Water (Switzerland), 12(10), 2787. doi:10.3390/w12102787.

Béné, C., Arthur, R., Norbury, H., Allison, E. H., Beveridge, M., Bush, S., Campling, L., Leschen, W., Little, D., Squires, D., Thilsted, S. H., Troell, M., & Williams, M. (2016). Contribution of Fisheries and Aquaculture to Food Security and Poverty Reduction: Assessing the Current Evidence. World Development, 79, 177–196. doi:10.1016/j.worlddev.2015.11.007.

Cameira, M. do R., & Pereira, L. S. (2019). Innovation issues in water, agriculture and food. Water (Switzerland), 11(6), 1230. doi:10.3390/w11061230.

Blanchard, J. L., Watson, R. A., Fulton, E. A., Cottrell, R. S., Nash, K. L., Bryndum-Buchholz, A., Büchner, M., Carozza, D. A., Cheung, W. W. L., Elliott, J., Davidson, L. N. K., Dulvy, N. K., Dunne, J. P., Eddy, T. D., Galbraith, E., Lotze, H. K., Maury, O., Müller, C., Tittensor, D. P., & Jennings, S. (2017). Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nature Ecology and Evolution, 1(9), 1240–1249. doi:10.1038/s41559-017-0258-8.

Rahman, M. L., Shahjahan, M., & Ahmed, N. (2021). Tilapia farming in Bangladesh: Adaptation to climate change. Sustainability (Switzerland), 13(14), 1–20. doi:10.3390/su13147657.

BPS-Statistics Indonesia. (2019). Value of Production and Cost of Production per Planting Season per Hectare of Wetland Paddy, Dryland Paddy, Maize, and Soybean, 2017. Available online: https://www.bps.go.id/id/statistics-table/1/MjA1NSMx/nilai-produksi-dan-biaya-produksi-per-musim-tanam-per-hektar-budidaya-tanaman-padi-sawah--padi-ladang--jagung--dan-kedelai--2017.html (accessed on February 2024).

Statistics Indonesia. (2022). Number of Population by Type of Sex and Regency/City (People), 2020-2022. Badan Pusat Statistik Provinsi Sumatera Barat, Indonesia. Available online: https://sumut.bps.go.id/indicator/12/65/1/jumlah-penduduk-menurut-jenis-kelamin-dan-kabupaten-kota.html (accessed on February 2024).

Statistics Indonesia. (2024). Harvested Area, Production, and Productivity of Paddy by Regency/Municipality Result of Area Sampling Frame (ASF) 2021-2023. Badan Pusat Statistik Provinsi Sumatera Barat, Statistics of Sumatera Barat Province, Indonesia. Available online: https://sumbar.bps.go.id/indicator/53/276/1/luas-panen-padi-menurut-kabupaten-kota-hasil-ksa.html (accessed on February 2024).

Statistics Indonesia. (2023). Rice Production by Regency/Municipality Result of Area Sampling Frame (ASF) (Tons), 2021-2023. Badan Pusat Statistik Provinsi Sumatera Barat, Statistics of Sumatera Barat Province, Indonesia. Available online: https://sumbar.bps.go.id/indicator/53/278/1/produksi-beras-menurut-kabupaten-kota-hasil-ksa.html (accessed on June 2023).

Mojjada, S. K., Divu, D. N., Sudhakaran, P. O., Sundaram, S. L. P., Menon, M., Mojjada, R. K., ... & Gopalakrishnan, A. (2024). An integrated techno-economic decision-support fiscal forecast model for sea cage mariculture enterprises for Asian sea bass production in Indian territorial waters. Aquaculture, 580, 740351. doi:10.1016/j.aquaculture.2023.740351.

Rakib, M. R. J., Miah, S., Hossain, M. B., Kumar, R., Jolly, Y. N., Akter, S., ... & Idris, A. M. (2024). Delineation of trace metal level in fish feed and farmed fish, Tilapia (Oreochromis mossumbicus) and their consequences on human health. Regional Studies in Marine Science, 71, 103403. doi:10.1016/j.rsma.2024.103403.

Salie, K. (2014). Aquaculture practices in irrigation reservoirs of the Western Cape Province of South Africa in relation to multiple resource use and socio-ecological interaction. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa.

Soetjipto, W., Andriansyah, R., Qurrata, R. A., Setiadi, T., Susanto, H., Solah, A., Hasan, U., Khaerawati, U., Aryshandy, C., Moriansyah, L., Purnama, N. D., Wahyuni, S., Horida, E., & Kurnia, I. (2019). Value Business and Investment Opportunities. Directorate of Investment Business, Directorate General of Strengthening the Competitiveness of Marine and Fishery Products, Ministry of Maritime Affairs and Fisheries, Central Jakarta, Indonesia.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-02-010


  • There are currently no refbacks.

Copyright (c) 2024 Lily Montarcih Limantara, Asmelita Asmelita Asmelita, Mohammad Bisri Bisri, Widandi Soetopo Soetopo, Indra Farni Farni

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.