Influence of Filler Materials on Bituminous Mastic Rheology at High Temperatures

Sivaprakash G., Padmarekha Ajithkumar


The mixing and compaction temperatures of the bituminous mixture are determined by the viscosity of the binder. It was always a concern to understand the influence of the type of filler on the workability of the bituminous mixture. The interaction of the filler with the bitumen plays a key role in this. The inert filler has a physical interaction with the binder, and the active filler will have both a physical and chemical interaction. Based on the type of interaction, the viscosity and shear thinning characteristics of the mastic (binder + filler) change, which will hence influence the workability of the bituminous mixture. An experimental investigation is conducted to measure the viscosity of the mastic with two types of filler, one chosen from the active filler category (hydrated lime) and another from the inert filler category (quarry dust). A shear rate sweep experiment was carried out within the temperature range of 100 to 160 °C to analyze the Newtonian and shear thinning responses of the mastic. Results indicate that, for an equivalent weight proportion of the filler, mastic containing quarry dust exhibited elevated Newtonian viscosity and zero-shear viscosity (as predicted using the Carreau Yasuda Model). Additionally, quarry dust mastic demonstrated a higher rate of shear thinning. Consequently, the beneficial effect of shear thinning during the compaction of bituminous mixtures has the potential to enhance workability and streamline the compaction process.


Doi: 10.28991/CEJ-2024-010-02-013

Full Text: PDF


Bituminous Mastic; Workability; Shear Rate Sweep Test; Newtonian Viscosity; Shear Thinning Behavior; Zero Shear Viscosity.


Bocci, E., Prosperi, E., & Bocci, M. (2023). Influence of the Hot-Mix Asphalt Production Temperature on the Effectiveness of the Reclaimed Asphalt Rejuvenation Process. Infrastructures, 8(1), 8. doi:10.3390/infrastructures8010008.

Mazalan, N. A. A., Mohd Satar, M. K. I., Mohamed, A., & Mohd Warid, M. N. (2023). Rheological properties of asphaltene-modified asphalt binder and mastic. Physics and Chemistry of the Earth, 131, 103422. doi:10.1016/j.pce.2023.103422.

Yildirim, Y., Ideker, J., & Hazlett, D. (2006). Evaluation of Viscosity Values for Mixing and Compaction Temperatures. Journal of Materials in Civil Engineering, 18(4), 545–553. doi:10.1061/(asce)0899-1561(2006)18:4(545).

Shenoy, A. (2001). Determination of the Temperature for Mixing Aggregates with Polymer-Modified Asphalts. International Journal of Pavement Engineering, 2(1), 33–47. doi:10.1080/10298430108901715.

Padma Rekha, A., & Murali Krishnan, J. (2011). Experimental investigations on high temperature transition of asphalt. Construction and Building Materials, 25(11), 4221–4231. doi:10.1016/j.conbuildmat.2011.04.064.

Saboo, N., & Kumar, P. (2015). Study of flow behavior for predicting mixing temperature of bitumen. Construction and Building Materials, 87, 38–44. doi:10.1016/j.conbuildmat.2015.04.001.

Wang, C., Hao, P., Ruan, F., Zhang, X., & Adhikari, S. (2013). Determination of the production temperature of warm mix asphalt by workability test. Construction and Building Materials, 48, 1165–1170. doi:10.1016/j.conbuildmat.2013.07.097.

Yildirim, Y. (2000). Mixing and compaction temperatures for superpave mixes. The University of Texas at Austin, Ph.D. Thesis, Austin, United States.

ASTM D 2493-95a. (2007). Standard Viscosity-Temperature Chart for Asphalts. ASTM International, Pennsylvania, United States. doi:10.1520/D2493-95A.

Watson, D. E., West, R. C., Turner, P. A., & Casola, J. R. (2010). Mixing and Compaction Temperatures of Asphalt Binders in Hot-Mix Asphalt. National Academies Press, Washington, United States. doi:10.17226/14367.

Ren, S., Liu, X., & Erkens, S. (2023). Unraveling the critical indicators for evaluating the high-temperature performance of rejuvenator-aged bitumen blends. Case Studies in Construction Materials, 19, 2522. doi:10.1016/j.cscm.2023.e02522.

Zhang, J., Luo, T., Cui, Y., Xie, B., Wang, J., & Yan, C. (2023). Characterizing ZSV of SBS modified asphalt using shear rate sweep test and frequency sweep oscillation test. Construction and Building Materials, 371, 130757. doi:10.1016/j.conbuildmat.2023.130757.

Cheng, Y., Liang, J., Wang, W., Wang, H., Zhao, W., Li, A., & Xia, W. (2024). Improvement of ZSV analysis methods and ZSV-based viscosity evolution of salt-eroded bitumen. Construction and Building Materials, 414, 135006. doi:10.1016/j.conbuildmat.2024.135006.

Bennert, T., Reinke, G., Mogawer, W., & Mooney, K. (2010). Assessment of workability and compactability of warm-mix asphalt. Transportation Research Record, 2180, 36–47. doi:10.3141/2180-05.

Matos, P., Micaelo, R., Duarte, C., & Quaresma, L. (2014). Influence of bitumen and filler on the selection of appropriate mixing and compaction temperatures. International Journal of Pavement Research and Technology, 7(4), 237–246. doi:10.6135/

Chaudhary, M., Saboo, N., & Gupta, A. (2021). Introduction of a new parameter to quantify the fatigue damage in asphalt mastics and asphalt binder. Coatings, 11(7), 828. doi:10.3390/coatings11070828.

E, G., Zhang, J., Shen, Q., Ji, P., Wang, J., & Xiao, Y. (2023). Influence of Filler Type and Rheological Properties of Asphalt Mastic on the Asphalt Mastic–Aggregate Interaction. Materials, 16(2), 574. doi:10.3390/ma16020574.

Li, Z., Zhang, X., Liu, F., Su, J., Zhao, Q., & Liu, L. (2024). Effect of replacement of limestone mineral powder with fly ash and direct coal liquefaction residue on the rheological properties of asphalt mastic. Construction and Building Materials, 412, 134803. doi:10.1016/j.conbuildmat.2023.134803.

Das, A. K., & Singh, D. (2018). Effects of Basalt and Hydrated Lime Fillers on Rheological and Fracture Cracking Behavior of Polymer Modified Asphalt Mastic. Journal of Materials in Civil Engineering, 30(3), 04018011. doi:10.1061/(asce)mt.1943-5533.0002196.

Zeng, M., & Wu, C. (2008). Effects of type and content of mineral filler on viscosity of asphalt mastic and mixing and compaction temperatures of asphalt mixture. Transportation Research Record, 2051, 31–40. doi:10.3141/2051-05.

Mastoras, F., Varveri, A., van Tooren, M., & Erkens, S. (2021). Effect of mineral fillers on ageing of bituminous mastics. Construction and Building Materials, 276, 122215. doi:10.1016/j.conbuildmat.2020.122215.

Kołodziej, K., Bichajło, L., & Siwowski, T. (2021). The influence of zero shear viscosity of tla-modified binder and mastic composition on the permanent deformation resistance of mastic asphalt mixture. Materials, 14(18), 5167. doi:10.3390/ma14185167.

Adnan, A. M., Lü, C., Luo, X., & Wang, J. (2021). Impact of graphene oxide on zero shear viscosity, fatigue life and low-temperature properties of asphalt binder. Materials, 14(11), 3073. doi:10.3390/ma14113073.

IS 73. (2018). Paving Bitumen - Specification. Bureau of Indian Standards, New Delhi, India.

Nivitha, M. R., & Murali Krishnan, J. (2020). Rheological characterisation of unmodified and modified bitumen in the 90–200°C temperature regime. Road Materials and Pavement Design, 21(5), 1341–1358. doi:10.1080/14680629.2018.1552890.

ASTM, D4402-06 (2012). Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM International, Pennsylvania, United States. doi:10.1520/D4402-06.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-02-013


  • There are currently no refbacks.

Copyright (c) 2024 Sivaprakash G, Padmarekha Ajithkumar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.