Influence of Filler Materials on Bituminous Mastic Rheology at High Temperatures
Abstract
Doi: 10.28991/CEJ-2024-010-02-013
Full Text: PDF
Keywords
References
Bocci, E., Prosperi, E., & Bocci, M. (2023). Influence of the Hot-Mix Asphalt Production Temperature on the Effectiveness of the Reclaimed Asphalt Rejuvenation Process. Infrastructures, 8(1), 8. doi:10.3390/infrastructures8010008.
Mazalan, N. A. A., Mohd Satar, M. K. I., Mohamed, A., & Mohd Warid, M. N. (2023). Rheological properties of asphaltene-modified asphalt binder and mastic. Physics and Chemistry of the Earth, 131, 103422. doi:10.1016/j.pce.2023.103422.
Yildirim, Y., Ideker, J., & Hazlett, D. (2006). Evaluation of Viscosity Values for Mixing and Compaction Temperatures. Journal of Materials in Civil Engineering, 18(4), 545–553. doi:10.1061/(asce)0899-1561(2006)18:4(545).
Shenoy, A. (2001). Determination of the Temperature for Mixing Aggregates with Polymer-Modified Asphalts. International Journal of Pavement Engineering, 2(1), 33–47. doi:10.1080/10298430108901715.
Padma Rekha, A., & Murali Krishnan, J. (2011). Experimental investigations on high temperature transition of asphalt. Construction and Building Materials, 25(11), 4221–4231. doi:10.1016/j.conbuildmat.2011.04.064.
Saboo, N., & Kumar, P. (2015). Study of flow behavior for predicting mixing temperature of bitumen. Construction and Building Materials, 87, 38–44. doi:10.1016/j.conbuildmat.2015.04.001.
Wang, C., Hao, P., Ruan, F., Zhang, X., & Adhikari, S. (2013). Determination of the production temperature of warm mix asphalt by workability test. Construction and Building Materials, 48, 1165–1170. doi:10.1016/j.conbuildmat.2013.07.097.
Yildirim, Y. (2000). Mixing and compaction temperatures for superpave mixes. The University of Texas at Austin, Ph.D. Thesis, Austin, United States.
ASTM D 2493-95a. (2007). Standard Viscosity-Temperature Chart for Asphalts. ASTM International, Pennsylvania, United States. doi:10.1520/D2493-95A.
Watson, D. E., West, R. C., Turner, P. A., & Casola, J. R. (2010). Mixing and Compaction Temperatures of Asphalt Binders in Hot-Mix Asphalt. National Academies Press, Washington, United States. doi:10.17226/14367.
Ren, S., Liu, X., & Erkens, S. (2023). Unraveling the critical indicators for evaluating the high-temperature performance of rejuvenator-aged bitumen blends. Case Studies in Construction Materials, 19, 2522. doi:10.1016/j.cscm.2023.e02522.
Zhang, J., Luo, T., Cui, Y., Xie, B., Wang, J., & Yan, C. (2023). Characterizing ZSV of SBS modified asphalt using shear rate sweep test and frequency sweep oscillation test. Construction and Building Materials, 371, 130757. doi:10.1016/j.conbuildmat.2023.130757.
Cheng, Y., Liang, J., Wang, W., Wang, H., Zhao, W., Li, A., & Xia, W. (2024). Improvement of ZSV analysis methods and ZSV-based viscosity evolution of salt-eroded bitumen. Construction and Building Materials, 414, 135006. doi:10.1016/j.conbuildmat.2024.135006.
Bennert, T., Reinke, G., Mogawer, W., & Mooney, K. (2010). Assessment of workability and compactability of warm-mix asphalt. Transportation Research Record, 2180, 36–47. doi:10.3141/2180-05.
Matos, P., Micaelo, R., Duarte, C., & Quaresma, L. (2014). Influence of bitumen and filler on the selection of appropriate mixing and compaction temperatures. International Journal of Pavement Research and Technology, 7(4), 237–246. doi:10.6135/ijprt.org.tw/2014.7(4).237.
Chaudhary, M., Saboo, N., & Gupta, A. (2021). Introduction of a new parameter to quantify the fatigue damage in asphalt mastics and asphalt binder. Coatings, 11(7), 828. doi:10.3390/coatings11070828.
E, G., Zhang, J., Shen, Q., Ji, P., Wang, J., & Xiao, Y. (2023). Influence of Filler Type and Rheological Properties of Asphalt Mastic on the Asphalt Mastic–Aggregate Interaction. Materials, 16(2), 574. doi:10.3390/ma16020574.
Li, Z., Zhang, X., Liu, F., Su, J., Zhao, Q., & Liu, L. (2024). Effect of replacement of limestone mineral powder with fly ash and direct coal liquefaction residue on the rheological properties of asphalt mastic. Construction and Building Materials, 412, 134803. doi:10.1016/j.conbuildmat.2023.134803.
Das, A. K., & Singh, D. (2018). Effects of Basalt and Hydrated Lime Fillers on Rheological and Fracture Cracking Behavior of Polymer Modified Asphalt Mastic. Journal of Materials in Civil Engineering, 30(3), 04018011. doi:10.1061/(asce)mt.1943-5533.0002196.
Zeng, M., & Wu, C. (2008). Effects of type and content of mineral filler on viscosity of asphalt mastic and mixing and compaction temperatures of asphalt mixture. Transportation Research Record, 2051, 31–40. doi:10.3141/2051-05.
Mastoras, F., Varveri, A., van Tooren, M., & Erkens, S. (2021). Effect of mineral fillers on ageing of bituminous mastics. Construction and Building Materials, 276, 122215. doi:10.1016/j.conbuildmat.2020.122215.
Kołodziej, K., Bichajło, L., & Siwowski, T. (2021). The influence of zero shear viscosity of tla-modified binder and mastic composition on the permanent deformation resistance of mastic asphalt mixture. Materials, 14(18), 5167. doi:10.3390/ma14185167.
Adnan, A. M., Lü, C., Luo, X., & Wang, J. (2021). Impact of graphene oxide on zero shear viscosity, fatigue life and low-temperature properties of asphalt binder. Materials, 14(11), 3073. doi:10.3390/ma14113073.
IS 73. (2018). Paving Bitumen - Specification. Bureau of Indian Standards, New Delhi, India.
Nivitha, M. R., & Murali Krishnan, J. (2020). Rheological characterisation of unmodified and modified bitumen in the 90–200°C temperature regime. Road Materials and Pavement Design, 21(5), 1341–1358. doi:10.1080/14680629.2018.1552890.
ASTM, D4402-06 (2012). Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM International, Pennsylvania, United States. doi:10.1520/D4402-06.
DOI: 10.28991/CEJ-2024-010-02-013
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Sivaprakash G, Padmarekha Ajithkumar
This work is licensed under a Creative Commons Attribution 4.0 International License.