Stress Concentration Factors in KT-Joints Subjected to Complex Bending Loads Using Artificial Neural Networks
Downloads
Doi: 10.28991/CEJ-2024-010-04-04
Full Text: PDF
[2] Zhou, K., Zuo, J., Wang, W., & Bao, S. (2020). Stress Concentration Factors for Multi-planar Tubular Joints Subjected to Axial Loading. E3S Web of Conferences, 213. doi:10.1051/e3sconf/202021303014.
[3] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Rasul, A. (2023). Rehabilitation Techniques for Offshore Tubular Joints. Journal of Marine Science and Engineering, 11(2), 461. doi:10.3390/jmse11020461.
[4] Maheswaran, J., & Siriwardane, S. C. (2016). Fatigue life estimation of tubular joints - A comparative study. Fatigue & Fracture of Engineering Materials & Structures, 39(1), 30–46. doi:10.1111/ffe.12314.
[5] Hoon, K. H., Wong, L. K., & Soh, A. K. (2001). Experimental investigation of a doubler-plate reinforced tubular T-joint subjected to combined loadings. Journal of Constructional Steel Research, 57(9), 1015–1039. doi:10.1016/S0143-974X(01)00023-2.
[6] Kuang, J. G., Potvin, A. B., & Leick, R. D. (1975). Stress concentration in tubular joints. Proceedings of the Annual Offshore Technology Conference, doi:10.4043/2205-MS.
[7] Wordsworth, A.C. (1981).Stress Concentration Factors at K and KT tubular joints. Fatigue in Offshore Structural Steels , Thomas Telford Publishing, London, United Kingdom.
[8] Wordsworth, A. C., & Smedley, G. P. (1978). Stress concentrations at unstiffened tubular joints. European Offshore Steels Research Seminar, 27-29 November, 1978, Abington Hall, United Kingdom.
[9] Efthymiou, M. (1988). Development of SCF formulae and generalized influence functions for use in fatigue analysis. OTJ 88. Recent Developments in Tubular Joints Technology, Surrey, United Kingdom.
[10] Hellier, A. K., Connolly, M. P., & Dover, W. D. (1990). Stress concentration factors for tubular Y- and T-joints. International Journal of Fatigue, 12(1), 13–23. doi:10.1016/0142-1123(90)90338-F.
[11] Lloyd's Register. (1992). Stress Concentration Factors for Tubular Complex Joints, Lloyd's Register of Shipping for health and Safety Executive, Offshore Technology Report, (OTH 91 353), 1-106.
[12] Smedley, P., & Fisher, P. (1991). Stress concentration factors for simple tubular joints. International Ocean and Polar Engineering Conference (ISOPE), 11-16 August, 1991, Edinburgh, United Kingdom.
[13] Morgan, M. R., & Lee, M. M. K. (1997). New parametric equations for stress concentration factors in tubular K-joints under balanced axial loading. International Journal of Fatigue, 19(4), 309–317. doi:10.1016/S0142-1123(96)00081-3.
[14] Morgan, M. R., & Lee, M. M. K. (1998). Parametric equations for distributions of stress concentration factors in tubular K-joints under out-of-plane moment loading. International Journal of Fatigue, 20(6), 449–461. doi:10.1016/S0142-1123(98)00011-5.
[15] DNV. (2016). DNVGL-RP-C203. Fatigue design of offshore structures. DNV, Bí¦rum, Norway.
[16] Norsok: N-004. (2004). design of steel structures. Standards Norway, Oslo, Norway.
[17] Zhao, X.-L., Herion, S., Packer, JA., Puthli, RS., Sedlacek, G., Wardenier, J., Weynand, K., van Wingerde, AM., & Yeomans, NF. (2000). Design guide for circular and rectangular hollow section welded joints under fatique loading. In Design guide for circular and rectangular hollow section welded joints under fatique loading, 1-121. TUV-Verlag, Koln, Germany.
[18] Ahmadi, H., & Zavvar, E. (2015). Stress concentration factors induced by out-of-plane bending loads in ring-stiffened tubular KT-joints of jacket structures. Thin-Walled Structures, 91, 82–95. doi:10.1016/j.tws.2015.02.011.
[19] Ahmadi, H., & Lotfollahi-Yaghin, M. A. (2015). Stress concentration due to in-plane bending (IPB) loads in ring-stiffened tubular KT-joints of offshore structures: Parametric study and design formulation. Applied Ocean Research, 51, 54–66. doi:10.1016/j.apor.2015.02.009.
[20] Ahmadi, H., Yeganeh, A., Mohammadi, A. H., & Zavvar, E. (2016). Probabilistic analysis of stress concentration factors in tubular KT-joints reinforced with internal ring stiffeners under in-plane bending loads. Thin-Walled Structures, 99, 58–75. doi:10.1016/j.tws.2015.11.010.
[21] Ahmadi, H. (2016). A probability distribution model for SCFs in internally ring-stiffened tubular KT-joints of offshore structures subjected to out-of-plane bending loads. Ocean Engineering, 116, 184–199. doi:10.1016/j.oceaneng.2016.02.037.
[22] Ahmadi, H., Ali, Z.N. (2016). Stress Concentration Factors in Uniplanar Tubular KT-Joints of Jacket Structures Subjected to In-Plane Bending Loads, International Journal of Maritime Technology, 5, 27-39.
[23] Ahmadi, H., & Zavvar, E. (2016). The effect of multi-planarity on the SCFs in offshore tubular KT-joints subjected to in-plane and out-of-plane bending loads. Thin-Walled Structures, 106, 148–165. doi:10.1016/j.tws.2016.04.020.
[24] Zavvar, E., Hectors, K., & De Waele, W. (2021). Stress concentration factors of multi-planar tubular KT-joints subjected to in-plane bending moments. Marine Structures, 78(March), 103000. doi:10.1016/j.marstruc.2021.103000.
[25] Zavvar, E., Sadat Hosseini, A., & Lotfollahi-Yaghin, M. A. (2021). Stress concentration factors in steel tubular KT-connections with FRP-Wrapping under bending moments. Structures, 33, 4743–4765. doi:10.1016/j.istruc.2021.06.100.
[26] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Nouman, H. (2023). Empirical modeling of stress concentration factors using finite element analysis and artificial neural networks for the fatigue design of tubular KT-joints under combined loading. Fatigue and Fracture of Engineering Materials and Structures, 46(11), 4333–4349. doi:10.1111/ffe.14122.
[27] Yeoh, S. K., Soh, A. K., & Soh, C. K. (1995). Behaviour of tubular T-joints subjected to combined loadings. Journal of Constructional Steel Research, 32(3), 259–280. doi:10.1016/0143-974X(95)93898-E.
[28] Gulati, K. C., Wang, W. J., & Kan, D. K. Y. (1982). An analytical study of stress concentration effects in multibrace joints under combined loading. Proceedings of the Annual Offshore Technology Conference, OTC-4407-MS, Texas, United States. doi:10.4043/4407-ms.
[29] ARSEM. (1987). Design guides for offshore structures - welded tubular joints, Vol. 1, Technip, Association de recherche sur les structures meÌtalliques marines (ARSEM), Paris, France.
[30] American Petroleum Institute (API). (2014). API Recommended Practice 2A-WSD. Planning, Designing, and Constructing Fixed Offshore Platforms”Working Stress Design. American Petroleum Institute (API), Washington, United States.
[31] Ahmadi, H., Lotfollahi-yaghin, M. A., & Yong-bo, S. (2013). Experimental and Numerical Investigation of Geometric SCFs in Internally Ring-Stiffened Tubular KT-Joints of Offshore Structures. Journal of the Persian Gulf, 43(1), 7–8.
[32] Ahmadi, H. (2019). Probabilistic analysis of the DoB in axially-loaded tubular KT-joints of offshore structures. Applied Ocean Research, 87, 64–80. doi:10.1016/j.apor.2019.03.018.
[33] van Wingerde, A. M., Packer, J. A., & Wardenier, J. (1995). Criteria for the fatigue assessment of hollow structural section connections. Journal of Constructional Steel Research, 35(1), 71–115. doi:10.1016/0143-974X(94)00030-I.
[34] N'Diaye, A., Hariri, S., Pluvinage, G., & Azari, Z. (2007). Stress concentration factor analysis for notched welded tubular T-joints. International Journal of Fatigue, 29(8), 1554–1570. doi:10.1016/j.ijfatigue.2006.10.030.
[35] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Hina, A. (2023). An Artificial Neural Network Model for the Stress Concentration Factors in KT-Joints Subjected to Axial Compressive Load. Materials Science Forum, 1103, 163–175. doi:10.4028/p-ypo50i.
[36] Vijaya Kumar, S. D., Lo, M., Karuppanan, S., & Ovinis, M. (2022). Empirical Failure Pressure Prediction Equations for Pipelines with Longitudinal Interacting Corrosion Defects Based on Artificial Neural Network. Journal of Marine Science and Engineering, 10(6). doi:10.3390/jmse10060764.
[37] Soh, A. K., & Soh, C. K. (1995). Stress analysis of axially loaded T tubular joints reinforced with doubler plates. Computers and Structures, 55(1), 141–149. doi:10.1016/0045-7949(94)00412-V.
[38] Ahmadi, H., & Zavvar, E. (2020). Degree of bending (DoB) in offshore tubular KT-joints under the axial, in-plane bending (IPB), and out-of-plane bending (OPB) loads. Applied Ocean Research, 95(2020), 102015. doi:10.1016/j.apor.2019.102015.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
