Modelling of Flood Hazard Early Warning Group Decision Support System

Arief A. Soebroto, Lily M. Limantara, Ery Suhartanto, Moh. Sholichin


Early warning of flood hazards needs to be carried out comprehensively to avoid a higher risk of disaster. Every decision on early warning of a flood hazard is carried out in part by one party, namely the government or water resource managers. This research aims to provide a collaborative decision-making model for early warning of flood hazards through a Group Decision Support System Model (GDSS), especially in Indonesia. The novelty of this research is that the GDSS model involves more than one decision-maker and multi-criteria decision-making for early warning of flood hazards in the downstream Kali Sadar River, Mojokerto Regency, East Java Province, Indonesia. The GDSS model was developed using a hybrid method, namely the Analytical Network Process (ANP) and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR). There was more than one decision result; voting was carried out using the BORDA method to produce the decision. The test results of GDSS were obtained using a Spearman rank correlation coefficient of 0.8425 and matrix confusion, an accuracy value of 86.7%, a precision value of 86.7%, a recall value of 86.7%, and an f-measure of 86.7%. Based on the test results, good results were obtained from the GDSS model.


Doi: 10.28991/CEJ-2024-010-02-018

Full Text: PDF


ANP; Early Warning; Flood Hazard; Group Decision Support System; VIKOR.


World Bank Group. (2021). Climate Risk Profile: Ethiopia (2021): The World Bank Group, Washington, United States. Available online: (accessed on June 2023).

Fekete, A., & Subramanian, S. (2023). Multi-risks attributed to climate change and urbanization in East Africa: a bibliometric analysis of a science gap. African Geographical Review, 1–23. doi:10.1080/19376812.2023.2256696.

Chndra, F., Sigaligging, M. C. N., Putri, R. N., Putri, R. N., Sari, D. M., Kiswara, P. N. A., ... & Zheta, F. R. (2023). Socialization and Implementation of Biopori to Prevent Flood Disasters by Utilizing Used Goods. Maspul Journal of Community Empowerment, 5(2), 207-213.

Garai, T., & Garg, H. (2022). Multi-criteria decision making of water resource management problem (in Agriculture field, Purulia district) based on possibility measures under generalized single valued non-linear bipolar neutrosophic environment. Expert Systems with Applications, 205, 117715. doi:10.1016/j.eswa.2022.117715.

Hasanuzzaman, M., Shit, P. K., Bera, B., & Islam, A. (2023). Characterizing recurrent flood hazards in the Himalayan foothill region through data-driven modelling. Advances in Space Research, 71(12), 5311–5326. doi:10.1016/j.asr.2023.02.028.

Bunmi Mudashiru, R., Sabtu, N., Abdullah, R., Saleh, A., & Abustan, I. (2022). Optimality of flood influencing factors for flood hazard mapping: An evaluation of two multi-criteria decision-making methods. Journal of Hydrology, 612, 128055. doi:10.1016/j.jhydrol.2022.128055.

Zabihi, O., Siamaki, M., Gheibi, M., Akrami, M., & Hajiaghaei-Keshteli, M. (2023). A smart sustainable system for flood damage management with the application of artificial intelligence and multi-criteria decision-making computations. International Journal of Disaster Risk Reduction, 84, 103470. doi:10.1016/j.ijdrr.2022.103470.

Vafadarnikjoo, A., Chalvatzis, K., Botelho, T., & Bamford, D. (2023). A stratified decision-making model for long-term planning: Application in flood risk management in Scotland. Omega (United Kingdom), 116, 102803. doi:10.1016/

Rossmo, D. K., & Summers, L. (2022). Uncertainty and heuristics in offender decision-making: Deviations from rational choice. Journal of Criminal Justice, 81, 101923. doi:10.1016/j.jcrimjus.2022.101923.

Schupmann, W. (2023). “We are not the ethics police”: The professionalization of clinical ethicists and the regulation of medical decision-making. Social Science and Medicine, 322, 115808. doi:10.1016/j.socscimed.2023.115808.

Yalcin, A. S., Kilic, H. S., & Delen, D. (2022). The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review. Technological Forecasting and Social Change, 174, 121193. doi:10.1016/j.techfore.2021.121193.

Lo, H. W., Liaw, C. F., Gul, M., & Lin, K. Y. (2021). Sustainable supplier evaluation and transportation planning in multi-level supply chain networks using multi-attribute- and multi-objective decision making. Computers and Industrial Engineering, 162, 0360–8352. doi:10.1016/j.cie.2021.107756.

Opabola, E. A., & Galasso, C. (2022). Multicriteria decision making for selecting an optimal survey approach for large building portfolios. International Journal of Disaster Risk Reduction, 76, 2212–4209. doi:10.1016/j.ijdrr.2022.102985.

Lima, C. A. S., Heck, H. A. D., Almeida, A. K., Marques, L. da S., de Souza, R. S., & de Almeida, I. K. (2022). Multicriteria analysis for identification of flood control mechanisms: Application to extreme events in cities of different Brazilian regions. International Journal of Disaster Risk Reduction, 71. doi:10.1016/j.ijdrr.2021.102769.

Manna, S., Basu, T. M., & Mondal, S. K. (2020). A soft set based VIKOR approach for some decision-making problems under complex neutrosophic environment. Engineering Applications of Artificial Intelligence, 89. doi:10.1016/j.engappai.2019.103432.

Büyüközkan, G., & Tüfekçi, G. (2021). A decision-making framework for evaluating appropriate business blockchain platforms using multiple preference formats and VIKOR. Information Sciences, 571, 337–357. doi:10.1016/j.ins.2021.04.044.

Meni̇z, B., & Özkan, E. M. (2023). Vaccine selection for COVID-19 by AHP and novel VIKOR hybrid approach with interval type-2 fuzzy sets. Engineering Applications of Artificial Intelligence, 119. doi:10.1016/j.engappai.2022.105812.

Tzeng, G.-H., & Huang, J.-J. (2011). Multiple Attribute Decision Making. Chapman and Hall/CRC, New York, United States doi:10.1201/b11032.

Marques, A. C., Machado, L. C., Alencar de Morais Correia, L. M., Leal Vieira, M. J., Luíza da Silva, M., Morais Galdino de Lima, M. F., Pontes do Espírito Santo, P. P., Morais, D. C., & Frej, E. A. (2021). Support for multicriteria group decision with voting procedures: Selection of electricity generation technologies. Cleaner Environmental Systems, 3, 2666–7894. doi:10.1016/j.cesys.2021.100060.

Gongora-Salazar, P., Rocks, S., Fahr, P., Rivero-Arias, O., & Tsiachristas, A. (2023). The Use of Multicriteria Decision Analysis to Support Decision Making in Healthcare: An Updated Systematic Literature Review. Value in Health, 26(5), 780–790. doi:10.1016/j.jval.2022.11.007.

Yang, X., & Chen, Z. (2023). A hybrid approach based on Monte Carlo simulation-VIKOR method for water quality assessment. Ecological Indicators, 150, 110202. doi:10.1016/j.ecolind.2023.110202.

Kamali Saraji, M., Aliasgari, E., & Streimikiene, D. (2023). Assessment of the challenges to renewable energy technologies adoption in rural areas: A Fermatean CRITIC-VIKOR approach. Technological Forecasting and Social Change, 189, 122399. doi:10.1016/j.techfore.2023.122399.

Sayadi, M. K., Heydari, M., & Shahanaghi, K. (2009). Extension of VIKOR method for decision making problem with interval numbers. Applied Mathematical Modelling, 33(5), 2257–2262. doi:10.1016/j.apm.2008.06.002.

Liu, C., Yu, L., Liu, B., Wang, D., & Yang, J. (2023). A group decision-making and optimization method based on relative inverse number. Information Sciences, 644, 119327. doi:10.1016/j.ins.2023.119327.

Mahajne, M., & Volij, O. (2021). Pairwise Consensus and Borda Rule. SSRN Electronic Journal. doi:10.2139/ssrn.3766198.

Zahid, M. A., & De Swart, H. (2015). The borda majority count. Information Sciences, 295, 429–440. doi:10.1016/j.ins.2014.10.044.

Panja, S., Bag, S., Hao, F., & Roy, B. (2020). A Smart Contract System for Decentralized Borda Count Voting. IEEE Transactions on Engineering Management, 67(4), 1323–1339. doi:10.1109/TEM.2020.2986371.

Orouskhani, M., Shi, D., & Cheng, X. (2021). A Fuzzy Adaptive Dynamic NSGA-II with Fuzzy-Based Borda Ranking Method and its Application to Multimedia Data Analysis. IEEE Transactions on Fuzzy Systems, 29(1), 118–128. doi:10.1109/TFUZZ.2020.2979119.

Shekhovtsov, A. (2021). How strongly do rank similarity coefficients differ used in decision making problems? Procedia Computer Science, 192, 4570–4577. doi:10.1016/j.procs.2021.09.235.

Zhu, L. (2020). Selection of Multi-Level Deep Features via Spearman Rank Correlation for Synthetic Aperture Radar Target Recognition Using Decision Fusion. IEEE Access, 8, 133914–133927. doi:10.1109/ACCESS.2020.3010969.

Jia, K., Yang, Z., Zheng, L., Zhu, Z., & Bi, T. (2021). Spearman Correlation-Based Pilot Protection for Transmission Line Connected to PMSGs and DFIGs. IEEE Transactions on Industrial Informatics, 17(7), 4532–4544. doi:10.1109/TII.2020.3018499.

Tamir, T. S., Xiong, G., Li, Z., Tao, H., Shen, Z., Hu, B., & Menkir, H. M. (2020). Traffic Congestion Prediction using Decision Tree, Logistic Regression and Neural Networks. IFAC-PapersOnLine, 53(5), 512–517. doi:10.1016/j.ifacol.2021.04.138.

Ruuska, S., Hämäläinen, W., Kajava, S., Mughal, M., Matilainen, P., & Mononen, J. (2018). Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle. Behavioural Processes, 148, 56–62. doi:10.1016/j.beproc.2018.01.004.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-02-018


  • There are currently no refbacks.

Copyright (c) 2024 Arief Andy Soebroto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.