Behavior of Axially Loaded Concrete Columns Reinforced with Steel Tubes Infilled with Cementitious Grouting Material
Downloads
Doi: 10.28991/CEJ-2024-010-02-017
Full Text: PDF
Downloads
[2] Giakoumelis, G., & Lam, D. (2004). Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60(7), 1049–1068. doi:10.1016/j.jcsr.2003.10.001.
[3] Choi, K.-K., & Xiao, Y. (2010). Analytical Model of Circular CFRP Confined Concrete-Filled Steel Tubular Columns under Axial Compression. Journal of Composites for Construction, 14(1), 125–133. doi:10.1061/(asce)cc.1943-5614.0000056.
[4] Lai, B. L., Zhang, M. Y., Zheng, X. F., Chen, Z. P., & Zheng, Y. Y. (2023). Experimental study on the axial compressive behaviour of steel reinforced concrete composite columns with stay-in-place ECC jacket. Journal of Building Engineering, 68, 106174. doi:10.1016/j.jobe.2023.106174.
[5] Mathew, S., & NI, N. (2021). Concrete Encased Steel Composite Columns: A Review. In Proceedings of the International Conference on Systems, Energy & Environment (ICSEE), Kerala, India. doi:10.2139/ssrn.3780548.
[6] Kartheek, T., & Das, T. V. (2020). 3D Modelling and analysis of encased steel-concrete composite column using Abaqus. Materials Today: Proceedings, 27, 1545–1554. doi:10.1016/j.matpr.2020.03.200.
[7] Liew, J. R., Xiong, M. X., & Lai, B. L. (2021). Design of Steel-Concrete Composite Structures Using High-Strength Materials. Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/c2019-0-05474-x.
[8] Soliman, K. Z., Arafa, A. I., & Elrakib, T. M. (2013). Review of design codes of concrete encased steel short columns under axial compression. HBRC Journal, 9(2), 134–143. doi:10.1016/j.hbrcj.2013.02.002.
[9] Melesse, G., Jima, S., Asale, T., Moges, Y., & Kaske Kassa, H. (2023). Study on Mechanical Behavior of Fully Encased Composite Slender Columns with High-Strength Concrete Using FEM Simulation. Advances in Civil Engineering, 3581727. doi:10.1155/2023/3581727.
[10] Jegadesh, J. S. S., & Jayalekshmi, S. (2016). Using fibres and fly ash in concrete-filled steel tube columns. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 169(10), 741–755. doi:10.1680/jstbu.15.00130.
[11] Aslani, F., Uy, B., Tao, Z., & Mashiri, F. (2015). Predicting the axial load capacity of high-strength concrete filled steel tubular columns. Steel and Composite Structures, 19(4), 967–993. doi:10.12989/scs.2015.19.4.967.
[12] Alshimmeri, A. J. H. (2016). Structural Behavior of Confined Concrete Filled Aluminum Tubular (CFT) Columns under Concentric Load. Journal of Engineering, 22(8), 125–139. doi:10.31026/j.eng.2016.08.08.
[13] Zhu, A., Zhang, X., Zhu, H., Zhu, J., & Lu, Y. (2017). Experimental study of concrete filled cold-formed steel tubular stub columns. Journal of Constructional Steel Research, 134, 17–27. doi:10.1016/j.jcsr.2017.03.003.
[14] Hassooni, A. N., & Al-Zaidee, S. R. (2022). Rehabilitation of Composite Column Subjected to Axial Load. Civil Engineering Journal (Iran), 8(3), 595–611. doi:10.28991/CEJ-2022-08-03-013.
[15] Elremaily, A., & Azizinamini, A. (2002). Behavior and strength of circular concrete-filled tube columns. Journal of Constructional Steel Research, 58(12), 1567–1591. doi:10.1016/S0143-974X(02)00005-6.
[16] Lahlou, K., Lachemi, M., & Aí¯tcin, P.-C. (1999). Confined High-Strength Concrete under Dynamic Compressive Loading. Journal of Structural Engineering, 125(10), 1100–1108. doi:10.1061/(asce)0733-9445(1999)125:10(1100).
[17] Hassooni, A. N., & Al Zaidee, S. R. (2022). Behavior and Strength of Composite Columns under the Impact of Uniaxial Compression Loading. Engineering, Technology and Applied Science Research, 12(4), 8843–8849. doi:10.48084/etasr.4753.
[18] Abadel, A. A. (2023). Structural Performance of Strengthening of High-Performance Geopolymer Concrete Columns Utilizing Different Confinement Materials: Experimental and Numerical Study. Buildings, 13(7), 1709. doi:10.3390/buildings13071709.
[19] Wang, X., Liu, J., & Zhang, S. (2015). Behavior of short circular tubed-reinforced-concrete columns subjected to eccentric compression. Engineering Structures, 105, 77–86. doi:10.1016/j.engstruct.2015.10.001.
[20] Hossain, K. M. A., Chu, K., & Anwar, M. S. (2021). Axial load behavior of ultrahigh strength concrete-filled steel tube columns of various geometric and reinforcement configurations. Infrastructures, 6(5), 66. doi:10.3390/infrastructures6050066.
[21] Ilanthalir, A., Jerlin Regin, J., & Maheswaran, J. (2020). Concrete-filled steel tube columns of different cross-sectional shapes under axial compression: A review. IOP Conference Series: Materials Science and Engineering, 983(1), 12007. doi:10.1088/1757-899X/983/1/012007.
[22] Mustapha, F. A., Sulaiman, A., & Mohamed, R. N. (2021). Performance of fly ash and silica fume self-compacting concrete filled steel tube stub columns under axial compression. IOP Conference Series: Materials Science and Engineering, 1144, 012012. doi:10.1088/1757-899x/1144/1/012012.
[23] Ma, X., Bao, C., Wang, H., Cao, J., Cao, F., & Lim, K. S. (2023). Study on Axial Compression Properties of a New Type of Fiber-Reinforced Square Concrete-Filled Steel-Tube Composite Column. Arabian Journal for Science and Engineering, 48(10), 13415–13427. doi:10.1007/s13369-023-07817-6.
[24] Shah, S. M. I., & Ganesh, G. M. (2023). Micro-Steel Fiber-Reinforced Self-compacting Concrete-Filled Steel-Tube Columns Subjected to Axial Compression. International Journal of Steel Structures, 23(4), 1031–1045. doi:10.1007/s13296-023-00747-x.
[25] Alhussainy, F., Sheikh, M. N., & Hadi, M.N.S. (2018). Axial Load-Axial Deformation Behaviour of SCC Columns Reinforced with Steel Tubes. Structures, 15, 259–269. doi:10.1016/j.istruc.2018.07.006.
[26] Alhussainy, F., Neaz Sheikh, M., & Hadi, M.N.S. (2019). P-m interactions of self-consolidating concrete columns reinforced with steel tubes. ACI Structural Journal, 116(3), 135–147. doi:10.14359/51714473.
[27] ANSI/AISC 360-10. (2010). Specification for structural steel buildings. American Institute of Steel Construction (AISC), Chicago, United States.
[28] Hadi, M.N.S., Alhussainy, F., & Sheikh, M. N. (2017). Behavior of Self-Compacting Concrete Columns Reinforced Longitudinally with Steel Tubes. Journal of Structural Engineering, 143(6), 4017024. doi:10.1061/(asce)st.1943-541x.0001752.
[29] ACI 318-19. (2019). Building code requirements for structural concrete and commentary. American Concrete Institute (ACI), Michigan, United States.
[30] ABAQUS version 6.14. (2019). Dassault Systemes Simulia, Johnston, United States.
[31] ABAQUS. (2019). Analysis User's Manual version 2019. Dassault Systemes Simulia, Johnston, United States.
[32] Elwi, A. A., & Murray, D. W. (1979). a 3D Hypoelastic Concrete Constitutive Relationship. ASCE J Eng Mech Div, 105(4), 623–641. doi:10.1061/jmcea3.0002510.
[33] Tao, Z., Wang, Z. Bin, & Yu, Q. (2013). Finite element modelling of concrete-filled steel stub columns under axial compression. Journal of Constructional Steel Research, 89, 121–131. doi:10.1016/j.jcsr.2013.07.001.
[34] Yun, X., & Gardner, L. (2017). Stress-strain curves for hot-rolled steels. Journal of Constructional Steel Research, 133, 36–46. doi:10.1016/j.jcsr.2017.01.024.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.