Behavior of Axially Loaded Concrete Columns Reinforced with Steel Tubes Infilled with Cementitious Grouting Material

Ahlam A. Abbood, Nazar Oukaili


The paper presents a novel method of reinforcing concrete columns using small-diameter steel tubes instead of traditional steel bars. The researchers conducted experimental investigations on twelve mid-scale circular concrete column specimens, which were divided into two groups consisting of six specimens each: short and long columns. Two of the specimens in each group were reinforced with steel bars, while the remaining four were reinforced with steel tubes filled with cementitious grouting material. The study proposed two concepts for cementitious grouted steel-tube reinforcement. The first concept utilized steel tubes with equivalent net areas to the steel bar areas used in the reference column, while the second concept used steel-tube reinforcement with the same diameter as the steel bars in the reference column. Nonlinear Finite Element (FE) analyses were conducted on experimental specimens using ABAQUS software. The results showed that using steel tubes with an area equivalent to that of steel bars instead of conventional columns increased the bearing capacity of reinforced concrete columns by 17%. Moreover, using steel tubes whose area matched 30% of the steel bar area achieved a bearing capacity of about 81% of the conventional concrete columns. The experimental and FE analysis findings indicate that this methodology can increase the bearing capacity of reinforced concrete columns when compared to traditional methods. The axial load-axial displacement curves, axial load-axial strain curves, and failure load of the FE model all demonstrated good convergence with the experimental data.


Doi: 10.28991/CEJ-2024-010-02-017

Full Text: PDF


Composite Column; Concrete Column; Steel Tube; Grouting Material; Spiral Pitch.


Sakino, K., Nakahara, H., Morino, S., & Nishiyama, I. (2004). Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns. Journal of Structural Engineering, 130(2), 180–188. doi:10.1061/(asce)0733-9445(2004)130:2(180).

Giakoumelis, G., & Lam, D. (2004). Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60(7), 1049–1068. doi:10.1016/j.jcsr.2003.10.001.

Choi, K.-K., & Xiao, Y. (2010). Analytical Model of Circular CFRP Confined Concrete-Filled Steel Tubular Columns under Axial Compression. Journal of Composites for Construction, 14(1), 125–133. doi:10.1061/(asce)cc.1943-5614.0000056.

Lai, B. L., Zhang, M. Y., Zheng, X. F., Chen, Z. P., & Zheng, Y. Y. (2023). Experimental study on the axial compressive behaviour of steel reinforced concrete composite columns with stay-in-place ECC jacket. Journal of Building Engineering, 68, 106174. doi:10.1016/j.jobe.2023.106174.

Mathew, S., & NI, N. (2021). Concrete Encased Steel Composite Columns: A Review. In Proceedings of the International Conference on Systems, Energy & Environment (ICSEE), Kerala, India. doi:10.2139/ssrn.3780548.

Kartheek, T., & Das, T. V. (2020). 3D Modelling and analysis of encased steel-concrete composite column using Abaqus. Materials Today: Proceedings, 27, 1545–1554. doi:10.1016/j.matpr.2020.03.200.

Liew, J. R., Xiong, M. X., & Lai, B. L. (2021). Design of Steel-Concrete Composite Structures Using High-Strength Materials. Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/c2019-0-05474-x.

Soliman, K. Z., Arafa, A. I., & Elrakib, T. M. (2013). Review of design codes of concrete encased steel short columns under axial compression. HBRC Journal, 9(2), 134–143. doi:10.1016/j.hbrcj.2013.02.002.

Melesse, G., Jima, S., Asale, T., Moges, Y., & Kaske Kassa, H. (2023). Study on Mechanical Behavior of Fully Encased Composite Slender Columns with High-Strength Concrete Using FEM Simulation. Advances in Civil Engineering, 3581727. doi:10.1155/2023/3581727.

Jegadesh, J. S. S., & Jayalekshmi, S. (2016). Using fibres and fly ash in concrete-filled steel tube columns. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 169(10), 741–755. doi:10.1680/jstbu.15.00130.

Aslani, F., Uy, B., Tao, Z., & Mashiri, F. (2015). Predicting the axial load capacity of high-strength concrete filled steel tubular columns. Steel and Composite Structures, 19(4), 967–993. doi:10.12989/scs.2015.19.4.967.

Alshimmeri, A. J. H. (2016). Structural Behavior of Confined Concrete Filled Aluminum Tubular (CFT) Columns under Concentric Load. Journal of Engineering, 22(8), 125–139. doi:10.31026/j.eng.2016.08.08.

Zhu, A., Zhang, X., Zhu, H., Zhu, J., & Lu, Y. (2017). Experimental study of concrete filled cold-formed steel tubular stub columns. Journal of Constructional Steel Research, 134, 17–27. doi:10.1016/j.jcsr.2017.03.003.

Hassooni, A. N., & Al-Zaidee, S. R. (2022). Rehabilitation of Composite Column Subjected to Axial Load. Civil Engineering Journal (Iran), 8(3), 595–611. doi:10.28991/CEJ-2022-08-03-013.

Elremaily, A., & Azizinamini, A. (2002). Behavior and strength of circular concrete-filled tube columns. Journal of Constructional Steel Research, 58(12), 1567–1591. doi:10.1016/S0143-974X(02)00005-6.

Lahlou, K., Lachemi, M., & Aïtcin, P.-C. (1999). Confined High-Strength Concrete under Dynamic Compressive Loading. Journal of Structural Engineering, 125(10), 1100–1108. doi:10.1061/(asce)0733-9445(1999)125:10(1100).

Hassooni, A. N., & Al Zaidee, S. R. (2022). Behavior and Strength of Composite Columns under the Impact of Uniaxial Compression Loading. Engineering, Technology and Applied Science Research, 12(4), 8843–8849. doi:10.48084/etasr.4753.

Abadel, A. A. (2023). Structural Performance of Strengthening of High-Performance Geopolymer Concrete Columns Utilizing Different Confinement Materials: Experimental and Numerical Study. Buildings, 13(7), 1709. doi:10.3390/buildings13071709.

Wang, X., Liu, J., & Zhang, S. (2015). Behavior of short circular tubed-reinforced-concrete columns subjected to eccentric compression. Engineering Structures, 105, 77–86. doi:10.1016/j.engstruct.2015.10.001.

Hossain, K. M. A., Chu, K., & Anwar, M. S. (2021). Axial load behavior of ultrahigh strength concrete-filled steel tube columns of various geometric and reinforcement configurations. Infrastructures, 6(5), 66. doi:10.3390/infrastructures6050066.

Ilanthalir, A., Jerlin Regin, J., & Maheswaran, J. (2020). Concrete-filled steel tube columns of different cross-sectional shapes under axial compression: A review. IOP Conference Series: Materials Science and Engineering, 983(1), 12007. doi:10.1088/1757-899X/983/1/012007.

Mustapha, F. A., Sulaiman, A., & Mohamed, R. N. (2021). Performance of fly ash and silica fume self-compacting concrete filled steel tube stub columns under axial compression. IOP Conference Series: Materials Science and Engineering, 1144, 012012. doi:10.1088/1757-899x/1144/1/012012.

Ma, X., Bao, C., Wang, H., Cao, J., Cao, F., & Lim, K. S. (2023). Study on Axial Compression Properties of a New Type of Fiber-Reinforced Square Concrete-Filled Steel-Tube Composite Column. Arabian Journal for Science and Engineering, 48(10), 13415–13427. doi:10.1007/s13369-023-07817-6.

Shah, S. M. I., & Ganesh, G. M. (2023). Micro-Steel Fiber-Reinforced Self-compacting Concrete-Filled Steel-Tube Columns Subjected to Axial Compression. International Journal of Steel Structures, 23(4), 1031–1045. doi:10.1007/s13296-023-00747-x.

Alhussainy, F., Sheikh, M. N., & Hadi, M.N.S. (2018). Axial Load-Axial Deformation Behaviour of SCC Columns Reinforced with Steel Tubes. Structures, 15, 259–269. doi:10.1016/j.istruc.2018.07.006.

Alhussainy, F., Neaz Sheikh, M., & Hadi, M.N.S. (2019). P-m interactions of self-consolidating concrete columns reinforced with steel tubes. ACI Structural Journal, 116(3), 135–147. doi:10.14359/51714473.

ANSI/AISC 360-10. (2010). Specification for structural steel buildings. American Institute of Steel Construction (AISC), Chicago, United States.

Hadi, M.N.S., Alhussainy, F., & Sheikh, M. N. (2017). Behavior of Self-Compacting Concrete Columns Reinforced Longitudinally with Steel Tubes. Journal of Structural Engineering, 143(6), 4017024. doi:10.1061/(asce)st.1943-541x.0001752.

ACI 318-19. (2019). Building code requirements for structural concrete and commentary. American Concrete Institute (ACI), Michigan, United States.

ABAQUS version 6.14. (2019). Dassault Systemes Simulia, Johnston, United States.

ABAQUS. (2019). Analysis User's Manual version 2019. Dassault Systemes Simulia, Johnston, United States.

Elwi, A. A., & Murray, D. W. (1979). a 3D Hypoelastic Concrete Constitutive Relationship. ASCE J Eng Mech Div, 105(4), 623–641. doi:10.1061/jmcea3.0002510.

Tao, Z., Wang, Z. Bin, & Yu, Q. (2013). Finite element modelling of concrete-filled steel stub columns under axial compression. Journal of Constructional Steel Research, 89, 121–131. doi:10.1016/j.jcsr.2013.07.001.

Yun, X., & Gardner, L. (2017). Stress-strain curves for hot-rolled steels. Journal of Constructional Steel Research, 133, 36–46. doi:10.1016/j.jcsr.2017.01.024.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-02-017


  • There are currently no refbacks.

Copyright (c) 2024 Ahlam Ali Abbood

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.