Consideration of Temperature Factors when Designing Butterfly Check Valves for Hazardous Production Facilities
Abstract
Doi: 10.28991/CEJ-SP2023-09-020
Full Text: PDF
Keywords
References
Fang, J., Cheng, X., Gai, H., Lin, S., & Lou, H. (2023). Development of machine learning algorithms for predicting internal corrosion of crude oil and natural gas pipelines. Computers and Chemical Engineering, 177, 108358. doi:10.1016/j.compchemeng.2023.108358.
Zheng, Q., Xu, Q., Shu, Z., Yang, D., Chen, W., Akkurt, N., Zhang, H., Lin, L., Zhang, X., & Ding, Y. (2023). A review of advances in mechanical behaviors of the underground energy transmission pipeline network under loads. Gas Science and Engineering, 117, 205074. doi:10.1016/j.jgsce.2023.205074.
Liu, M., Du, C., Luo, X., Liu, C., Wu, Z., & Li, X. (2023). Failure analysis in buried ductile iron pipelines: A study of leakage in drinking water distribution systems. Engineering Failure Analysis, 151, 107361. doi:10.1016/j.engfailanal.2023.107361.
Zhang, M., Guo, Y., Xie, Q., Zhang, Y., Wang, D., & Chen, J. (2022). Defect identification for oil and gas pipeline safety based on autonomous deep learning network. Computer Communications, 195, 14–26. doi:10.1016/j.comcom.2022.08.001.
Nakhal Akel, A. J., Paltrinieri, N., & Patriarca, R. (2022). Business analytics to advance industrial safety management. Engineering Reliability and Risk Assessment, 201–214. doi:10.1016/B978-0-323-91943-2.00006-X.
Lu, H., Xi, D., & Qin, G. (2023). Environmental risk of oil pipeline accidents. Science of the Total Environment, 874, 162386. doi:10.1016/j.scitotenv.2023.162386.
Yang, Y., Li, S., & Zhang, P. (2022). Data-driven accident consequence assessment on urban gas pipeline network based on machine learning. Reliability Engineering and System Safety, 219, 108216. doi:10.1016/j.ress.2021.108216.
Ramírez-Camacho, J. G., Carbone, F., Pastor, E., Bubbico, R., & Casal, J. (2017). Assessing the consequences of pipeline accidents to support land-use planning. Safety Science, 97, 34–42. doi:10.1016/j.ssci.2016.01.021.
Zhang, W., Zhang, J. L., Li, X. J., Chen, F., Guo, J., Li, W., & Cai, J. (2022). Energy pipeline strength evaluation and reliability technology based on Fuzzy deep learning network algorithm. Energy Reports, 8, 5129–5136. doi:10.1016/j.egyr.2022.03.203.
Alexandrov, I. A., Muranov, A. N., & Mikhailov, M. S. (2021). Development of an Algorithm for Automated Evaluation of the Operability of Structural Elements of Shut-off Valves. 2021 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT & QM & IS), IEEE, Yaroslavl, Russian Federation. doi:10.1109/itqmis53292.2021.9642718.
Tatarkanov, A. A., Alexandrov, I. A., Mikhailov, M. S., & Muranov, A. N. (2021). Algorithmic Approach to the Assessment Automation of the Pipeline Shut-Off Valves Tightness. International Journal of Engineering Trends and Technology, 69(12), 147–162. doi:10.14445/22315381/IJETT-V69I12P218.
Mikhailov, M. S., Tatarkanov, A. A., Glashev, R. M., & Ivanov, N. Z. (2019). Actual Problems of Product Serviceability Assessment Based on the Analysis of Research Results Obtained Through X-Ray Computed Tomography Method. 2019 International Conference “Quality Management, Transport and Information Security, Information Technologies” (IT & QM & IS), Sochi, Russia. doi:10.1109/itqmis.2019.8928316.
Han, P., Hua, H., Wang, H., & Shang, J. (2023). A graphic partition method based on nodes learning for energy pipelines network simulation. Energy, 282, 128179. doi:10.1016/j.energy.2023.128179.
Towler, G., & Sinnott, R. (2022). Transport and storage of fluids. Chemical Engineering Design, 953–1001, Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/b978-0-12-821179-3.00020-0.
Liu, T., Cheng, Y. F., Sharma, M., & Voordouw, G. (2017). Effect of fluid flow on biofilm formation and microbiologically influenced corrosion of pipelines in oilfield produced water. Journal of Petroleum Science and Engineering, 156, 451–459. doi:10.1016/j.petrol.2017.06.026.
Song, X., Yang, Y., Yu, D., Lan, G., Wang, Z., & Mou, X. (2016). Studies on the impact of fluid flow on the microbial corrosion behavior of product oil pipelines. Journal of Petroleum Science and Engineering, 146, 803–812. doi:10.1016/j.petrol.2016.07.035.
Calderón-Hernández, J. W., Sinatora, A., de Melo, H. G., Chaves, A. P., Mano, E. S., Leal Filho, L. S., Paiva, J. L., Braga, A. S., & Souza Pinto, T. C. (2020). Hydraulic convey of iron ore slurry: Pipeline wear and ore particle degradation in function of pumping time. Wear, 450–451, 203272. doi:10.1016/j.wear.2020.203272.
Brandt, M. J., Johnson, K. M., Elphinston, A. J., & Ratnayaka, D. D. (2017). Valves and Meters. Twort’s Water Supply, 743–775. doi:10.1016/b978-0-08-100025-0.00018-1.
Zheng, S., Luo, M., Xu, K., Li, X., Bie, Q., Liu, Y., Yang, H., & Liu, Z. (2019). Case study: Erosion of an axial flow regulating valve in a solid-gas pipe flow. Wear, 434–435, 202952. doi:10.1016/j.wear.2019.202952.
Chinyaev, I. R., Fominykh, A. V., & Ilinykh, E. A. (2016). The Valve is a Shutoff for the Passive Protection Systems of Pipelines. Procedia Engineering, 150, 220–224. doi:10.1016/j.proeng.2016.06.750.
Sotoodeh, K. (2021). Butterfly valve applications and design. In A Practical Guide to Piping and Valves for the Oil and Gas Industry, 147–241. doi:10.1016/b978-0-12-823796-0.00017-9.
Sotoodeh, K. (2021). Valve technology and selection. A Practical Guide to Piping and Valves for the Oil and Gas Industry, 559–584, Gulf Professional Publishing, Houston, United States. doi:10.1016/b978-0-12-823796-0.00021-0.
Collison, R. S., Engle, C. M., & Hodny, C. R. (2015). U.S. Patent No. 9,206,909. U.S. Patent and Trademark Office, Washington, United States.
Bazarov, A. A., Bondareva, N. V., & Navasardyan, A. A. (2022). Heating System for Rigid Wedge Valves. In Proceedings of the 7th International Conference on Industrial Engineering (ICIE 2021) Volume 1(7), 21-31. doi:10.1007/978-3-030-54817-9_149.
Ghelloudj, O., Zelmati, D., Ramoul, C. E., Gharbi, A., Ayad, A., Aoun, I. D., Saadi, A., & Bachiri, A. (2023). Reliability assessment of pipeline steel under corrosion defect. Materials Today: Proceedings, 1-6. doi:10.1016/j.matpr.2023.05.212.
Li, X., Wang, J., Abbassi, R., & Chen, G. (2022). A risk assessment framework considering uncertainty for corrosion-induced natural gas pipeline accidents. Journal of Loss Prevention in the Process Industries, 75, 104718. doi:10.1016/j.jlp.2021.104718.
Vishnuvardhan, S., Murthy, A. R., & Choudhary, A. (2023). A review on pipeline failures, defects in pipelines and their assessment and fatigue life prediction methods. International Journal of Pressure Vessels and Piping, 201, 104853. doi:10.1016/j.ijpvp.2022.104853.
BS EN 10250-2:2000. (2000). Open die steel forgings for general engineering purposes -Part 2: Non-alloy quality and special Steels. British Standard Institute (BSI), London, United Kingdom.
DOI: 10.28991/CEJ-SP2023-09-020
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Julia Soboleva, Abdulmejid Kerimov, Abas Lampezhev
This work is licensed under a Creative Commons Attribution 4.0 International License.