Properties and Microstructure of Treated Coal Bottom Ash as Cement Concrete Replacement
Vol. 10 No. 4 (2024): April
Research Articles
Downloads
Doi: 10.28991/CEJ-2024-010-04-08
Full Text: PDF
Alosta, M., Mamdouh, A., Al Mufargi, H., Abd Aziz, F. N. A., Rashid, A., Elbasir, O. M. M., & Al Dughaishi, H. (2024). Properties and Microstructure of Treated Coal Bottom Ash as Cement Concrete Replacement. Civil Engineering Journal, 10(4), 1125–1144. https://doi.org/10.28991/CEJ-2024-010-04-08
[1] El-Bitouri, Y. (2023). Rheological Behavior of Cement Paste: A Phenomenological State of the Art. Eng (Switzerland), 4(3), 1891–1904. doi:10.3390/eng4030107.
[2] Alaneme, G. U., Iro, U. I., Milad, A., Olaiya, B. C., Otu, O. N., Chibuisi, U. P., & Agada, J. (2023). Mechanical Properties Optimization and Simulation of Soil–Saw Dust Ash Blend Using Extreme Vertex Design (EVD) Method. International Journal of Pavement Research and Technology, 1–27. doi:10.1007/s42947-023-00272-4.
[3] Arafa, S., Milad, A., Yusoff, N. I. M., Al-Ansari, N., & Yaseen, Z. M. (2021). Investigation into the permeability and strength of pervious geopolymer concrete containing coated biomass aggregate material. Journal of Materials Research and Technology, 15, 2075–2087. doi:10.1016/j.jmrt.2021.09.045.
[4] Elbasir, O. M. M., Johari, M. A. M., Ahmad, Z. A., Mashaan, N. S., & Milad, A. (2023). The Compressive Strength and Microstructure of Alkali-Activated Mortars Utilizing By-Product-Based Binary-Blended Precursors. Applied Mechanics, 4(3), 885–898. doi:10.3390/applmech4030046.
[5] Dehwah, H. A. F. (2007). Effect of sulfate concentration and associated cation type on concrete deterioration and morphological changes in cement hydrates. Construction and Building Materials, 21(1), 29–39. doi:10.1016/j.conbuildmat.2005.07.010.
[6] Abdul Kadir, A., & Hassan, M. I. H. (2015). Leachability of Self-Compacting Concrete (SCC) Incorporated with Fly Ash and Bottom Ash by Using Synthetic Precipitation Leaching Procedure (SPLP). Applied Mechanics and Materials, 773–774, 1375–1379. doi:10.4028/www.scientific.net/amm.773-774.1375.
[7] Sandhya, B., & Reshma, E. K. (2013). A study on mechanical properties of cement concrete by partial replacement of fine aggregates with bottom ash. International Journal of students research in Technology & Management, 1(4), 416-430.
[8] Qaidi, S., Najm, H. M., Abed, S. M., Ahmed, H. U., Al Dughaishi, H., Al Lawati, J., Sabri, M. M., Alkhatib, F., & Milad, A. (2022). Fly Ash-Based Geopolymer Composites: A Review of the Compressive Strength and Microstructure Analysis. Materials, 15(20), 7098. doi:10.3390/ma15207098.
[9] Kadam, M. P., & Patil, Y. D. (2015). Effect of sieved coal bottom ash as a sand replacement on the properties of cement concrete. Magazine of Concrete Research, 67(5), 227–234. doi:10.1680/macr.14.00179.
[10] Rafieizonooz, M., Salim, M. R., Mirza, J., Hussin, M. W., Salmiati, Khan, R., & Khankhaje, E. (2017). Toxicity characteristics and durability of concrete containing coal ash as substitute for cement and river sand. Construction and Building Materials, 143, 234–246. doi:10.1016/j.conbuildmat.2017.03.151.
[11] An American recycling success story. (2015). Beneficial use of Coal Bottom Combustion Products. American Coal Ash Association (ACAA), Denver, United States.
[12] Dewi, S. J., Ramadhansyah, P. J., Norhidayah, A. H., Md. Maniruzzaman, A. A., Hainin, M. R., & Che Norazman, C. W. (2014). Performance of RHA Blended Cement Concrete under Sodium Chloride via Wetting and Drying. Applied Mechanics and Materials, 554, 106–110. doi:10.4028/www.scientific.net/amm.554.106.
[13] Jamaluddin, N., Hamzah, A. F., Wan Ibrahim, M. H., Jaya, R. P., Arshad, M. F., Zainal Abidin, N. E., & Dahalan, N. H. (2016). Fresh Properties and Flexural Strength of Self-Compacting Concrete Integrating Coal Bottom Ash. MATEC Web of Conferences, 47, 01010. doi:10.1051/matecconf/20164701010.
[14] Ibe Iro, U., Alaneme, G. U., Milad, A., Olaiya, B. C., Otu, O. N., Isu, E. U., & Amuzie, M. N. (2022). Optimization and Simulation of Saw Dust Ash Concrete Using Extreme Vertex Design Method. Advances in Materials Science and Engineering, 5082139. doi:10.1155/2022/5082139.
[15] Kadir, A. A., Hassan, M. I. H., & Abdullah, M. M. A. B. (2016). Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete. IOP Conference Series: Materials Science and Engineering, 133(1), 012036. doi:10.1088/1757-899X/133/1/012036.
[16] Ewa, D. E., Ukpata, J. O., Otu, O. N., Memon, Z. A., Alaneme, G. U., & Milad, A. (2023). Scheffe's Simplex Optimization of Flexural Strength of Quarry Dust and Sawdust Ash Pervious Concrete for Sustainable Pavement Construction. Materials, 16(2), 598. doi:10.3390/ma16020598.
[17] Um, N.-I., Ahn, J.-W., Han, G.-C., Lee, S.-J., Kim, H.-S., & Cho, H. (2008). Flotation process in coal bottom ash and their effect on the removal of unburned carbon. Geosystem Engineering, 11(4), 75–80. doi:10.1080/12269328.2008.10541289.
[18] Qaidi, S., Najm, H. M., Abed, S. M., Özkılıç, Y. O., Al Dughaishi, H., Alosta, M., Sabri, M. M. S., Alkhatib, F., & Milad, A. (2022). Concrete Containing Waste Glass as an Environmentally Friendly Aggregate: A Review on Fresh and Mechanical Characteristics. Materials, 15(18), 6222. doi:10.3390/ma15186222.
[19] ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
[20] Meena, A., Singh, N., & Singh, S. P. (2023). High-volume fly ash Self Consolidating Concrete with coal bottom ash and recycled concrete aggregates: Fresh, mechanical and microstructural properties. Journal of Building Engineering, 63, 105447. doi:10.1016/j.jobe.2022.105447.
[21] Singh, G., & ShriRam. (2023). Microstructural and other properties of copper slag–coal bottom ash incorporated concrete using fly ash as cement replacement. Innovative Infrastructure Solutions, 8(2), 78. doi:10.1007/s41062-023-01051-7.
[22] Muthusamy, K., Wong, W. H., Mohamad, N., Rajan, J., Budiea, A. M. A., P.P. Abdul Majeed, A., & Kırgız, M. S. (2023). Properties of concrete containing coal bottom ash as hydraulic binder substitution. In Advance Upcycling of By-products in Binder and Binder-Based Materials: Woodhead Publishing, 243–250. Woodhead Publishing. doi:10.1016/B978-0-323-90791-0.00002-0.
[23] Sorum, M. G., & Kalita, A. (2023). Effect of Bio-Cementation with Rice Husk Ash on Permeability of Silty Sand. Civil Engineering Journal, 9(11), 2854-2867. doi:10.28991/CEJ-2023-09-11-016.
[24] Singh, M., & Siddique, R. (2016). Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete. Journal of Cleaner Production, 112, 620–630. doi:10.1016/j.jclepro.2015.08.001.
[25] Rafieizonooz, M., Mirza, J., Salim, M. R., Hussin, M. W., & Khankhaje, E. (2016). Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Construction and Building Materials, 116, 15-24. doi:10.1016/j.conbuildmat.2016.04.080.
[26] Milad, A., Ali, A. S. B., Babalghaith, A. M., Memon, Z. A., Mashaan, N. S., Arafa, S., & Nur, N. I. (2021). Utilisation of waste-based geopolymer in asphalt pavement modification and construction; a review. Sustainability (Switzerland), 13(6), 3330. doi:10.3390/su13063330.
[27] Mangi, S. A., Wan Ibrahim, M. H., Jamaluddin, N., Arshad, M. F., & Putra Jaya, R. (2019). Short-term effects of sulphate and chloride on the concrete containing coal bottom ash as supplementary cementitious material. Engineering Science and Technology, an International Journal, 22(2), 515–522. doi:10.1016/j.jestch.2018.09.001.
[28] Benson, C. H., & Bradshaw, S. (2011). User guideline for coal bottom ash and boiler slag in green infrastructure construction. University of Wisconsin, Madison, United States.
[29] Alawi, A., Milad, A., Barbieri, D., Alosta, M., Alaneme, G. U., & Imran Latif, Q. B. alias. (2023). Eco-Friendly Geopolymer Composites Prepared from Agro-Industrial Wastes: A State-of-the-Art Review. CivilEng (Switzerland), 4(2), 433–453. doi:10.3390/civileng4020025.
[30] Singh, N., Shehnazdeep, & Bhardwaj, A. (2020). Reviewing the role of coal bottom ash as an alternative of cement. Construction and Building Materials, 233, 117276. doi:10.1016/j.conbuildmat.2019.117276.
[31] Khan, R. A., & Ganesh, A. (2016). The effect of coal bottom ash (CBA) on mechanical and durability characteristics of concrete. Journal of building materials and structures, 3(1), 31-42. doi:10.34118/jbms.v3i1.22.
[32] Ibrahim, A. H., Choong, K. K., Megat Johari, M. A., Md Noor, S. I., Zainal, N. L., & Ariffin, K. S. (2015). Effects of Coal Bottom Ash on the Compressive Strength of Portland Cement Mortar. Applied Mechanics and Materials, 802, 149–154. doi:10.4028/www.scientific.net/amm.802.149.
[33] ASTM C618-19. (2022). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-19.
[34] ASTM C150 / C150M-19a. (2020). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-19A.
[35] ASTM C33-03. (2010). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033-03.
[36] ASTM C109 / C109M-16. (2016). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-16.
[37] ASTM C78 / C78M-18. (2021). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0078_C0078M-18.
[38] ASTM C293/C293M-16. (2016). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0293_C0293M-16.
[39] ASTM C496 / C496M-17. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.
[40] ASTM C642-21. (2022). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0642-21.
[2] Alaneme, G. U., Iro, U. I., Milad, A., Olaiya, B. C., Otu, O. N., Chibuisi, U. P., & Agada, J. (2023). Mechanical Properties Optimization and Simulation of Soil–Saw Dust Ash Blend Using Extreme Vertex Design (EVD) Method. International Journal of Pavement Research and Technology, 1–27. doi:10.1007/s42947-023-00272-4.
[3] Arafa, S., Milad, A., Yusoff, N. I. M., Al-Ansari, N., & Yaseen, Z. M. (2021). Investigation into the permeability and strength of pervious geopolymer concrete containing coated biomass aggregate material. Journal of Materials Research and Technology, 15, 2075–2087. doi:10.1016/j.jmrt.2021.09.045.
[4] Elbasir, O. M. M., Johari, M. A. M., Ahmad, Z. A., Mashaan, N. S., & Milad, A. (2023). The Compressive Strength and Microstructure of Alkali-Activated Mortars Utilizing By-Product-Based Binary-Blended Precursors. Applied Mechanics, 4(3), 885–898. doi:10.3390/applmech4030046.
[5] Dehwah, H. A. F. (2007). Effect of sulfate concentration and associated cation type on concrete deterioration and morphological changes in cement hydrates. Construction and Building Materials, 21(1), 29–39. doi:10.1016/j.conbuildmat.2005.07.010.
[6] Abdul Kadir, A., & Hassan, M. I. H. (2015). Leachability of Self-Compacting Concrete (SCC) Incorporated with Fly Ash and Bottom Ash by Using Synthetic Precipitation Leaching Procedure (SPLP). Applied Mechanics and Materials, 773–774, 1375–1379. doi:10.4028/www.scientific.net/amm.773-774.1375.
[7] Sandhya, B., & Reshma, E. K. (2013). A study on mechanical properties of cement concrete by partial replacement of fine aggregates with bottom ash. International Journal of students research in Technology & Management, 1(4), 416-430.
[8] Qaidi, S., Najm, H. M., Abed, S. M., Ahmed, H. U., Al Dughaishi, H., Al Lawati, J., Sabri, M. M., Alkhatib, F., & Milad, A. (2022). Fly Ash-Based Geopolymer Composites: A Review of the Compressive Strength and Microstructure Analysis. Materials, 15(20), 7098. doi:10.3390/ma15207098.
[9] Kadam, M. P., & Patil, Y. D. (2015). Effect of sieved coal bottom ash as a sand replacement on the properties of cement concrete. Magazine of Concrete Research, 67(5), 227–234. doi:10.1680/macr.14.00179.
[10] Rafieizonooz, M., Salim, M. R., Mirza, J., Hussin, M. W., Salmiati, Khan, R., & Khankhaje, E. (2017). Toxicity characteristics and durability of concrete containing coal ash as substitute for cement and river sand. Construction and Building Materials, 143, 234–246. doi:10.1016/j.conbuildmat.2017.03.151.
[11] An American recycling success story. (2015). Beneficial use of Coal Bottom Combustion Products. American Coal Ash Association (ACAA), Denver, United States.
[12] Dewi, S. J., Ramadhansyah, P. J., Norhidayah, A. H., Md. Maniruzzaman, A. A., Hainin, M. R., & Che Norazman, C. W. (2014). Performance of RHA Blended Cement Concrete under Sodium Chloride via Wetting and Drying. Applied Mechanics and Materials, 554, 106–110. doi:10.4028/www.scientific.net/amm.554.106.
[13] Jamaluddin, N., Hamzah, A. F., Wan Ibrahim, M. H., Jaya, R. P., Arshad, M. F., Zainal Abidin, N. E., & Dahalan, N. H. (2016). Fresh Properties and Flexural Strength of Self-Compacting Concrete Integrating Coal Bottom Ash. MATEC Web of Conferences, 47, 01010. doi:10.1051/matecconf/20164701010.
[14] Ibe Iro, U., Alaneme, G. U., Milad, A., Olaiya, B. C., Otu, O. N., Isu, E. U., & Amuzie, M. N. (2022). Optimization and Simulation of Saw Dust Ash Concrete Using Extreme Vertex Design Method. Advances in Materials Science and Engineering, 5082139. doi:10.1155/2022/5082139.
[15] Kadir, A. A., Hassan, M. I. H., & Abdullah, M. M. A. B. (2016). Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete. IOP Conference Series: Materials Science and Engineering, 133(1), 012036. doi:10.1088/1757-899X/133/1/012036.
[16] Ewa, D. E., Ukpata, J. O., Otu, O. N., Memon, Z. A., Alaneme, G. U., & Milad, A. (2023). Scheffe's Simplex Optimization of Flexural Strength of Quarry Dust and Sawdust Ash Pervious Concrete for Sustainable Pavement Construction. Materials, 16(2), 598. doi:10.3390/ma16020598.
[17] Um, N.-I., Ahn, J.-W., Han, G.-C., Lee, S.-J., Kim, H.-S., & Cho, H. (2008). Flotation process in coal bottom ash and their effect on the removal of unburned carbon. Geosystem Engineering, 11(4), 75–80. doi:10.1080/12269328.2008.10541289.
[18] Qaidi, S., Najm, H. M., Abed, S. M., Özkılıç, Y. O., Al Dughaishi, H., Alosta, M., Sabri, M. M. S., Alkhatib, F., & Milad, A. (2022). Concrete Containing Waste Glass as an Environmentally Friendly Aggregate: A Review on Fresh and Mechanical Characteristics. Materials, 15(18), 6222. doi:10.3390/ma15186222.
[19] ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
[20] Meena, A., Singh, N., & Singh, S. P. (2023). High-volume fly ash Self Consolidating Concrete with coal bottom ash and recycled concrete aggregates: Fresh, mechanical and microstructural properties. Journal of Building Engineering, 63, 105447. doi:10.1016/j.jobe.2022.105447.
[21] Singh, G., & ShriRam. (2023). Microstructural and other properties of copper slag–coal bottom ash incorporated concrete using fly ash as cement replacement. Innovative Infrastructure Solutions, 8(2), 78. doi:10.1007/s41062-023-01051-7.
[22] Muthusamy, K., Wong, W. H., Mohamad, N., Rajan, J., Budiea, A. M. A., P.P. Abdul Majeed, A., & Kırgız, M. S. (2023). Properties of concrete containing coal bottom ash as hydraulic binder substitution. In Advance Upcycling of By-products in Binder and Binder-Based Materials: Woodhead Publishing, 243–250. Woodhead Publishing. doi:10.1016/B978-0-323-90791-0.00002-0.
[23] Sorum, M. G., & Kalita, A. (2023). Effect of Bio-Cementation with Rice Husk Ash on Permeability of Silty Sand. Civil Engineering Journal, 9(11), 2854-2867. doi:10.28991/CEJ-2023-09-11-016.
[24] Singh, M., & Siddique, R. (2016). Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete. Journal of Cleaner Production, 112, 620–630. doi:10.1016/j.jclepro.2015.08.001.
[25] Rafieizonooz, M., Mirza, J., Salim, M. R., Hussin, M. W., & Khankhaje, E. (2016). Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Construction and Building Materials, 116, 15-24. doi:10.1016/j.conbuildmat.2016.04.080.
[26] Milad, A., Ali, A. S. B., Babalghaith, A. M., Memon, Z. A., Mashaan, N. S., Arafa, S., & Nur, N. I. (2021). Utilisation of waste-based geopolymer in asphalt pavement modification and construction; a review. Sustainability (Switzerland), 13(6), 3330. doi:10.3390/su13063330.
[27] Mangi, S. A., Wan Ibrahim, M. H., Jamaluddin, N., Arshad, M. F., & Putra Jaya, R. (2019). Short-term effects of sulphate and chloride on the concrete containing coal bottom ash as supplementary cementitious material. Engineering Science and Technology, an International Journal, 22(2), 515–522. doi:10.1016/j.jestch.2018.09.001.
[28] Benson, C. H., & Bradshaw, S. (2011). User guideline for coal bottom ash and boiler slag in green infrastructure construction. University of Wisconsin, Madison, United States.
[29] Alawi, A., Milad, A., Barbieri, D., Alosta, M., Alaneme, G. U., & Imran Latif, Q. B. alias. (2023). Eco-Friendly Geopolymer Composites Prepared from Agro-Industrial Wastes: A State-of-the-Art Review. CivilEng (Switzerland), 4(2), 433–453. doi:10.3390/civileng4020025.
[30] Singh, N., Shehnazdeep, & Bhardwaj, A. (2020). Reviewing the role of coal bottom ash as an alternative of cement. Construction and Building Materials, 233, 117276. doi:10.1016/j.conbuildmat.2019.117276.
[31] Khan, R. A., & Ganesh, A. (2016). The effect of coal bottom ash (CBA) on mechanical and durability characteristics of concrete. Journal of building materials and structures, 3(1), 31-42. doi:10.34118/jbms.v3i1.22.
[32] Ibrahim, A. H., Choong, K. K., Megat Johari, M. A., Md Noor, S. I., Zainal, N. L., & Ariffin, K. S. (2015). Effects of Coal Bottom Ash on the Compressive Strength of Portland Cement Mortar. Applied Mechanics and Materials, 802, 149–154. doi:10.4028/www.scientific.net/amm.802.149.
[33] ASTM C618-19. (2022). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-19.
[34] ASTM C150 / C150M-19a. (2020). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-19A.
[35] ASTM C33-03. (2010). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033-03.
[36] ASTM C109 / C109M-16. (2016). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-16.
[37] ASTM C78 / C78M-18. (2021). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0078_C0078M-18.
[38] ASTM C293/C293M-16. (2016). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0293_C0293M-16.
[39] ASTM C496 / C496M-17. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.
[40] ASTM C642-21. (2022). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0642-21.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
