Influence of Gypsum on the Residual Properties of Fly Ash-Slag-Based Alkali-Activated Concrete

Sandeep G. S., Poornachandra Pandit, Shreelaxmi Prashanth, Jagadisha H. M.


High-temperature exposures of concrete lead to serious damage in concrete structures, resulting in the significant decay of mechanical properties and spalling of concrete. Alkali-activated concretes (AAC) of blended aluminosilicate precursors and activators have been proven to have higher thermal endurance than conventional portland cement concrete. Incorporation of gypsum (GY) in alkali-activated systems has proven to positively impact the mechanical properties when adopted in controlled amounts. GY releases SO42- to the binder system, which helps in the formation of ettringites, along with Ca2+, which leads to the formation of hydrates. This causes a reduction in porosity and improves strength gain. Incorporation of GY into the fly ash-slag-based alkali-activated system further improves thermal endurance by retaining considerable residual strengths even after 800°C exposure. In the present study, the influence of GY on the residual mechanical properties of fly ash-slag-based AAC is investigated to explore the thermal endurance of the ternary mix at elevated temperatures. The mechanical properties of fly ash (FA), Ground Granulated Blast Furnace Slag (GGBS), and gypsum (GY) ternary blended AAC subjected to elevated temperatures are studied in comparison with conventional portland cement concrete (control mix). AAC design mixes with varying proportions of GY as a replacement to FA-GGBS precursor are tested for mechanical properties to obtain the optimum mix. The residual mechanical properties of the FA-GGBS-GY optimum ternary AAC mix are obtained after exposure to elevated temperatures up to 800°C. The morphology and microstructural characteristics of AAC are studied by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) analyses to investigate the influence of gypsum on the thermal endurance of concrete when exposed to elevated temperatures. Improved thermal endurance is observed for AAC when FA-GGBS precursors are replaced with 5% of GY as compared to the thermal endurance of conventional portland cement concrete (PCC) of the same compressive strength.


Doi: 10.28991/CEJ-2024-010-03-017

Full Text: PDF


Alkali Activated Concrete (AAC); Fly Ash (FA); Ground Granulated Blast Furnace Slag (GGBS); Gypsum (GY); Elevated Temperature; Microstructure Analysis.


Guo, Y., Luo, L., Liu, T., Hao, L., Li, Y., Liu, P., & Zhu, T. (2024). A review of low-carbon technologies and projects for the global cement industry. Journal of Environmental Sciences (China), 136, 682–697. doi:10.1016/j.jes.2023.01.021.

Plaza, M. G., Martínez, S., & Rubiera, F. (2020). Co2 capture, use, and storage in the cement industry: State of the art and expectations. Energies, 13(21). doi:10.3390/en13215692.

Farooq, F., Jin, X., Faisal Javed, M., Akbar, A., Izhar Shah, M., Aslam, F., & Alyousef, R. (2021). Geopolymer concrete as sustainable material: A state of the art review. Construction and Building Materials, 306. doi:10.1016/j.conbuildmat.2021.124762.

Provis, J. L., Palomo, A., & Shi, C. (2015). Advances in understanding alkali-activated materials. Cement and Concrete Research, 78, 110–125. doi:10.1016/j.cemconres.2015.04.013.

Rastogi, A., & Paul, V. K. (2020). A critical review of the potential for fly ash utilisation in construction-specific applications in India. Environmental Research, Engineering and Management, 76(2), 65–75. doi:10.5755/J01.EREM.76.2.25166.

Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: Clean production, properties and applications. Journal of Cleaner Production, 125, 253–267. doi:10.1016/j.jclepro.2016.03.019.

Pradhan, P., Dwibedy, S., Pradhan, M., Panda, S., & Panigrahi, S. K. (2022). Durability characteristics of geopolymer concrete - Progress and perspectives. Journal of Building Engineering, 59. doi:10.1016/j.jobe.2022.105100.

Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90. doi:10.1016/j.conbuildmat.2015.03.036.

Mehta, A., Siddique, R., Ozbakkaloglu, T., Uddin Ahmed Shaikh, F., & Belarbi, R. (2020). Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Construction and Building Materials, 257. doi:10.1016/j.conbuildmat.2020.119548.

Kamath, M., Prashant, S., & Kumar, M. (2021). Micro-characterisation of alkali activated paste with fly ash-GGBS-metakaolin binder system with ambient setting characteristics. Construction and Building Materials, 277. doi:10.1016/j.conbuildmat.2021.122323.

Lecomte, I., Henrist, C., Liégeois, M., Maseri, F., Rulmont, A., & Cloots, R. (2006). (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. Journal of the European Ceramic Society, 26(16), 3789–3797. doi:10.1016/j.jeurceramsoc.2005.12.021.

Wang, X. Y., & Lee, H. S. (2010). Modeling the hydration of concrete incorporating fly ash or slag. Cement and Concrete Research, 40(7), 984–996. doi:10.1016/j.cemconres.2010.03.001.

Castellote, M., Alonso, C., Andrade, C., Castro, P., & Echeverría, M. (2001). Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures. Cement and Concrete Research, 31(2), 25–30. doi:10.1016/S0008-8846(00)00435-X.

Ruiz-Santaquiteria, C., Fernández-Jiménez, A., & Palomo, A. (2016). Alternative prime materials for developing new cements: Alkaline activation of alkali aluminosilicate glasses. Ceramics International, 42(8), 9333–9340. doi:10.1016/j.ceramint.2016.03.111.

Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., & MacPhee, D. E. (2011). Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO 2-H2O. Cement and Concrete Research, 41(9), 923–931. doi:10.1016/j.cemconres.2011.05.006.

Chang, J. J., Yeih, W., & Hung, C. C. (2005). Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes. Cement and Concrete Composites, 27(1), 85–91. doi:10.1016/j.cemconcomp.2003.12.001.

Son, H., Park, S. M., Seo, J. H., & Lee, H. K. (2019). Effect of CaSO4 incorporation on pore structure and drying shrinkage of alkali-activated binders. Materials, 12(10). doi:10.3390/MA12101673.

Hanjitsuwan, S., Injorhor, B., Phoo-ngernkham, T., Damrongwiriyanupap, N., Li, L. Y., Sukontasukkul, P., & Chindaprasirt, P. (2020). Drying shrinkage, strength and microstructure of alkali-activated high-calcium fly ash using FGD-gypsum and dolomite as expansive additive. Cement and Concrete Composites, 114. doi:10.1016/j.cemconcomp.2020.103760.

Ghosh, A., & Subbarao, C. (2001). Microstructural Development in Fly Ash Modified with Lime and Gypsum. Journal of Materials in Civil Engineering, 13(1), 65–70. doi:10.1061/(asce)0899-1561(2001)13:1(65).

Jeong, Y., Park, H., Jun, Y., Jeong, J. H., & Oh, J. E. (2016). Influence of slag characteristics on strength development and reaction products in a CaO-activated slag system. Cement and Concrete Composites, 72, 155–167. doi:10.1016/j.cemconcomp.2016.06.005.

Yoon, S., Park, H., Yum, W. S., Suh, J. Il, & Oh, J. E. (2018). Influence of calcium sulfate type on evolution of reaction products and strength in NaOH- and CaO-activated ground granulated blast-furnace slag. Applied Sciences, 8(12), 2500. doi:10.3390/app8122500.

Wang, D., Wang, Q., & Huang, Z. (2020). New insights into the early reaction of NaOH-activated slag in the presence of CaSO4. Composites Part B: Engineering, 198. doi:10.1016/j.compositesb.2020.108207.

An, Q., Pan, H., Zhao, Q., Du, S., & Wang, D. (2022). Strength development and microstructure of recycled gypsum-soda residue-GGBS based geopolymer. Construction and Building Materials, 331. doi:10.1016/j.conbuildmat.2022.127312.

Hamdan, A., Song, H., Yao, Z., Alnahhal, M. F., Kim, T., & Hajimohammadi, A. (2023). Modifications to reaction mechanisms, phase assemblages and mechanical properties of alkali-activated slags induced by gypsum addition. Cement and Concrete Research, 174. doi:10.1016/j.cemconres.2023.107311.

Cong, P., & Mei, L. (2021). Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum. Construction and Building Materials, 275. doi:10.1016/j.conbuildmat.2020.122171.

Feng, Y., Xue, Z., Zhang, B., Xie, J., Chen, C., Tan, J., & Zhao, C. (2023). Effects of phosphogypsum substitution on the performance of ground granulated blast furnace slag/fly ash-based alkali-activated binders. Journal of Building Engineering, 70. doi:10.1016/j.jobe.2023.106387.

Wang, Y., Huo, H., Chen, B., & Cui, Q. (2023). Development and optimization of phosphogypsum-based geopolymer cement. Construction and Building Materials, 369. doi:10.1016/j.conbuildmat.2023.130577.

Luan, Y., Wang, J., Ma, T., Wang, S., & Li, C. (2023). Modification mechanism of flue gas desulfurization gypsum on fly ash and ground granulated blast-furnace slag alkali-activated materials: Promoting green cementitious material. Construction and Building Materials, 396. doi:10.1016/j.conbuildmat.2023.132400.

Tu, W., & Zhang, M. (2023). Behaviour of alkali-activated concrete at elevated temperatures: A critical review. Cement and Concrete Composites, 138. doi:10.1016/j.cemconcomp.2023.104961.

Luo, Y., Li, S. H., Klima, K. M., Brouwers, H. J. H., & Yu, Q. (2022). Degradation mechanism of hybrid fly ash/slag based geopolymers exposed to elevated temperatures. Cement and Concrete Research, 151. doi:10.1016/j.cemconres.2021.106649.

Reddy, M. S., Dinakar, P., & Rao, B. H. (2018). Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete. Journal of Building Engineering, 20, 712–722. doi:10.1016/j.jobe.2018.09.010.

Rashad, A. M. (2015). Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles. Journal of Cleaner Production, 87(1), 717–725. doi:10.1016/j.jclepro.2014.09.080.

Wang, J., Ma, T., Luan, Y., Wang, S., & Zhang, Y. (2023). Investigation on the effects of desulfurization gypsum on the engineering properties of ternary geopolymers: Improving the utilization of industrial wastes. Journal of Cleaner Production, 414. doi:10.1016/j.jclepro.2023.137638.

Li, Y., Liu, X., Li, Z., Ren, Y., Wang, Y., & Zhang, W. (2021). Preparation, characterization and application of red mud, fly ash and desulfurized gypsum based eco-friendly road base materials. Journal of Cleaner Production, 284. doi:10.1016/j.jclepro.2020.124777.

Thokchom, S., Mandal, K. K., & Ghosh, S. (2012). Effect of Si/Al Ratio on Performance of Fly Ash Geopolymers at Elevated Temperature. Arabian Journal for Science and Engineering, 37(4), 977–989. doi:10.1007/s13369-012-0230-5.

Lahoti, M., Wong, K. K., Yang, E. H., & Tan, K. H. (2018). Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature. Ceramics International, 44(5), 5726–5734. doi:10.1016/j.ceramint.2017.12.226.

He, R., Dai, N., & Wang, Z. (2020). Thermal and Mechanical Properties of Geopolymers Exposed to High Temperature: A Literature Review. Advances in Civil Engineering, 2020. doi:10.1155/2020/7532703.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-03-017


  • There are currently no refbacks.

Copyright (c) 2024 Sandeep G S, Poornachandra Pandit, Shreelaxmi Prashanth, Jagadisha H M

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.