Influence of Sunflower Seed Husks Ash on the Structure Formation and Properties of Cement Concrete

Evgenii M. Shcherban', Sergey A. Stel'makh, Alexey N. Beskopylny, Levon R. Mailyan, Besarion Meskhi, Andrei Chernil’nik, Diana El'shaeva, Anastasia Pogrebnyak, Roman Yaschenko


The limitation of the application of non-renewable materials is one of the solutions to the problem of the sustainable evolution of civilization in the 21st century. Using additional binders in concrete obtained from plant waste will be economically and environmentally beneficial and will also allow us to move closer to achieving sustainable development goals. This study searches for rational composition components and a methodological approach regarding the technological characteristics to get the highest quality elements and prime concrete properties on the basis of sunflower seed husk ash (SSHA). Experimental concrete specimens were manufactured with partial Portland cement substitution with SSHA amounts ranging from 2% to 16% by weight in increments of 2%. This study focuses on investigating the density and workability of the concrete mixture, along with the compressive strength, concrete density, and water absorption. This article used granulometric, microscopic, and X-ray phase analysis methods. Including SSHA in all considered ranges reduces the slump in concrete mixtures. The optimal SSHA content in concrete is up to 12%. An 8% SSHA content has been found to deliver the most favorable mechanical characteristics of the concrete studied. The compressive strength of the investigated concrete has increased by 14.89%, and water absorption has decreased by 15.78%.


Doi: 10.28991/CEJ-2024-010-05-08

Full Text: PDF


Agricultural Waste; Sunflower Seed Husk Ash; Concrete Mixture; Concrete; Compressive Strength.


Bheel, N., Ibrahim, M. H. W., Adesina, A., Kennedy, C., & Shar, I. A. (2021). Mechanical performance of concrete incorporating wheat straw ash as partial replacement of cement. Journal of Building Pathology and Rehabilitation, 6, 1-7. doi:10.1007/s41024-020-00099-7.

Stel’makh, S. A., Beskopylny, A. N., Shcherban’, E. M., Mailyan, L. R., Meskhi, B., Shilov, A. A., El’shaeva, D., Chernil’nik, A., & Kurilova, S. (2023). Alteration of Structure and Characteristics of Concrete with Coconut Shell as a Substitution of a Part of Coarse Aggregate. Materials, 16(12), 4422. doi:10.3390/ma16124422.

Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Mailyan, L. R., Meskhi, B., Shilov, A. A., Chernil’nik, A., & El’shaeva, D. (2023). Effect of Walnut-Shell Additive on the Structure and Characteristics of Concrete. Materials, 16(4), 1752. doi:10.3390/ma16041752.

AL-Oqla, F. M., Faris, H., Habib, M., & Castillo, P. A. (2023). Evolving Genetic Programming Tree Models for Predicting the Mechanical Properties of Green Fibers. Emerging Science Journal, 7(6), 1863-1874. doi:10.28991/ESJ-2023-07-06-02.

Sorum, M. G., & Kalita, A. (2023). Effect of Bio-Cementation with Rice Husk Ash on Permeability of Silty Sand. Civil Engineering Journal (Iran), 9(11), 2854–2867. doi:10.28991/CEJ-2023-09-11-016.

Ganesh, A. C., & Muthukannan, M. (2021). Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. Journal of Cleaner Production, 282, 124543. doi:10.1016/j.jclepro.2020.124543.

He, J., Kawasaki, S., & Achal, V. (2020). The utilization of agricultural waste as agro-cement in concrete: A review. Sustainability (Switzerland), 12(17), 6971. doi:10.3390/SU12176971.

Raheem, A. A., & Ikotun, B. D. (2020). Incorporation of agricultural residues as partial substitution for cement in concrete and mortar – A review. Journal of Building Engineering, 31, 101428. doi:10.1016/j.jobe.2020.101428.

Salas Montoya, A., Chung, C. W., & Kim, J. H. (2023). High Performance Concretes with Highly Reactive Rice Husk Ash and Silica Fume. Materials, 16(11), 3903. doi:10.3390/ma16113903.

Joel, S. (2020). Compressive strength of concrete using fly ash and rice husk ash: A review. Civil Engineering Journal (Iran), 6(7), 1400–1410. doi:10.28991/cej-2020-03091556.

Endale, S. A., Taffese, W. Z., Vo, D. H., & Yehualaw, M. D. (2023). Rice Husk Ash in Concrete. Sustainability (Switzerland), 15(1), 137. doi:10.3390/su15010137.

Zhang, W., Liu, H., & Liu, C. (2022). Impact of Rice Husk Ash on the Mechanical Characteristics and Freeze–Thaw Resistance of Recycled Aggregate Concrete. Applied Sciences (Switzerland), 12(23), 12238. doi:10.3390/app122312238.

Kanthe, V., Deo, S., & Murmu, M. (2018). Combine use of fly ash and rice husk ash in concrete to improve its properties (research note). International Journal of Engineering, 31(7), 1012-1019. doi:10.5829/ije.2018.31.07a.02.

Stratoura, M. C., Lazari, G. E. D., Badogiannis, E. G., & Papadakis, V. G. (2023). Perlite and Rice Husk Ash Re-Use as Fine Aggregates in Lightweight Aggregate Structural Concrete—Durability Assessment. Sustainability (Switzerland), 15(5), 4217. doi:10.3390/su15054217.

Rani, G. Y., & Jaya Krishna, T. (2022). Effect of rice straw ash and micro silica on strength and durability of concrete. Materials Today: Proceedings, 60(3), 2151–2156. doi:10.1016/j.matpr.2022.02.107.

Gursel, A. P., Maryman, H., & Ostertag, C. (2016). A life-cycle approach to environmental, mechanical, and durability properties of “green” concrete mixes with rice husk ash. Journal of Cleaner Production, 112(1), 823–836. doi:10.1016/j.jclepro.2015.06.029.

Muhammad, A., & Thienel, K. C. (2023). Properties of Self-Compacting Concrete Produced with Optimized Volumes of Calcined Clay and Rice Husk Ash—Emphasis on Rheology, Flowability Retention and Durability. Materials, 16(16), 5513. doi:10.3390/ma16165513.

Wang, H., Pang, J., & Xu, Y. (2023). Mechanical Properties and Microstructure of Rice Husk Ash–Rubber–Fiber Concrete under Hygrothermal Environment. Polymers, 15(11), 2415. doi:10.3390/polym15112415.

Li, C., Mei, X., Dias, D., Cui, Z., & Zhou, J. (2023). Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model. Materials, 16(8), 3135. doi:10.3390/ma16083135.

Malathy, R., Shanmugam, R., Chung, I. M., Kim, S. H., & Prabakaran, M. (2022). Mechanical and Microstructural Properties of Composite Mortars with Lime, Silica Fume and Rice Husk Ash. Processes, 10(7), 1424. doi:10.3390/pr10071424.

Landa-Ruiz, L., Landa-Gómez, A., Mendoza-Rangel, J. M., Landa-Sánchez, A., Ariza-Figueroa, H., Méndez-Ramírez, C. T., Santiago-Hurtado, G., Moreno-Landeros, V. M., Croche, R., & Baltazar-Zamora, M. A. (2021). Physical, mechanical and durability properties of ecofriendly ternary concrete made with sugar cane bagasse ash and silica fume. Crystals, 11(9), 1012. doi:10.3390/cryst11091012.

Sebastin, S., Priya, A. K., Karthick, A., Sathyamurthy, R., & Ghosh, A. (2020). Agro Waste Sugarcane Bagasse as a Cementitious Material for Reactive Powder Concrete. Clean Technologies, 2(4), 476–491. doi:10.3390/cleantechnol2040030.

França, S., Sousa, L. N., Saraiva, S. L. C., Ferreira, M. C. N. F., Silva, M. V. de M. S., Gomes, R. C., Rodrigues, C. de S., Aguilar, M. T. P., & Bezerra, A. C. da S. (2023). Feasibility of Using Sugar Cane Bagasse Ash in Partial Replacement of Portland Cement Clinker. Buildings, 13(4), 843. doi:10.3390/buildings13040843.

Xu, Q., Ji, T., Gao, S. J., Yang, Z., & Wu, N. (2018). Characteristics and applications of sugar cane bagasse ash waste in cementitious materials. Materials, 12(1), 39. doi:10.3390/ma12010039.

Rossignolo, J. A., Rodrigues, M. S., Frias, M., Santos, S. F., & Junior, H. S. (2017). Improved interfacial transition zone between aggregate-cementitious matrix by addition sugarcane industrial ash. Cement and Concrete Composites, 80, 157–167. doi:10.1016/j.cemconcomp.2017.03.011.

De Soares, M. M. N. S., Garcia, D. C. S., Figueiredo, R. B., Aguilar, M. T. P., & Cetlin, P. R. (2016). Comparing the pozzolanic behavior of sugar cane bagasse ash to amorphous and crystalline SiO2. Cement and Concrete Composites, 71, 20–25. doi:10.1016/j.cemconcomp.2016.04.005.

Tchakouté, H. K., Rüscher, C. H., Hinsch, M., Djobo, J. N. Y., Kamseu, E., & Leonelli, C. (2017). Utilization of sodium waterglass from sugar cane bagasse ash as a new alternative hardener for producing metakaolin-based geopolymer cement. Chemie Der Erde, 77(2), 257–266. doi:10.1016/j.chemer.2017.04.003.

Frías, M., Villar, E., & Savastano, H. (2011). Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cement and Concrete Composites, 33(4), 490–496. doi:10.1016/j.cemconcomp.2011.02.003.

Marzouk, H. A., Arab, M. A., Fattouh, M. S., & Hamouda, A. S. (2023). Effect of Agricultural Phragmites, Rice Straw, Rice Husk, and Sugarcane Bagasse Ashes on the Properties and Microstructure of High-Strength Self-Compacted Self-Curing Concrete. Buildings, 13(9), 2394. doi:10.3390/buildings13092394.

Lertwattanaruk, P., & Makul, N. (2021). Influence of ground calcium carbonate waste on the properties of green self-consolidating concrete prepared by low-quality bagasse ash and rice husk ash. Materials, 14(15), 4232. doi:10.3390/ma14154232.

Baeza-Brotons, F., Payá, J., Galao, O., Alberti, M. G., & Garcés, P. (2020). Concrete for precast blocks: Binary and ternary combination of sewage sludge ash with diverse mineral residue. Materials, 13(20), 1–19. doi:10.3390/ma13204634.

Mwilongo, K. P., Machunda, R. L., & Jande, Y. A. C. (2020). Effect of elevated temperature on compressive strength and physical properties of neem seed husk ash concrete. Materials, 13(5), 13. doi:10.3390/ma13051198.

Maraveas, C. (2020). Production of sustainable construction materials using agro-wastes. Materials, 13(2), 262. doi:10.3390/ma13020262.

Paul, S. C., Mbewe, P. B. K., Kong, S. Y., & Šavija, B. (2019). Agricultural solid waste as source of supplementary cementitious materials in developing countries. Materials, 12(7), 1112. doi:10.3390/ma12071112.

Shahbazpanahi, S., & Faraj, R. H. (2020). Feasibility study on the use of shell sunflower ash and shell pumpkin ash as supplementary cementitious materials in concrete. Journal of Building Engineering, 30, 101271. doi:10.1016/j.jobe.2020.101271.

Quaranta, N., Unsen, M., López, H., Giansiracusa, C., Roether, J. A., & Boccaccini, A. R. (2011). Ash from sunflower husk as raw material for ceramic products. Ceramics International, 37(1), 377–385. doi:10.1016/j.ceramint.2010.09.015.

Zhu, Z., Zhang, C., Liu, R., Li, S., & Wang, M. (2023). Sunflower straw ash as an alternative activator in alkali-activated grouts: A new 100% waste-based material. Ceramics International, 49(19), 32308–32312. doi:10.1016/j.ceramint.2023.06.306.

Balador, Z. (2024). Agricultural by-products as construction materials. Sustainability and Toxicity of Building Materials, 263–287, Woodhead Publishing, Cambridge, United Kingdom. doi:10.1016/b978-0-323-98336-5.00013-3.

Bakkour, A., Ouldboukhitine, S. E., Biwole, P., & Amziane, S. (2024). A review of multi-scale hygrothermal characteristics of plant-based building materials. Construction and Building Materials, 412, 134850. doi:10.1016/j.conbuildmat.2023.134850.

Novi, V., Labonne, L., Ballas, S., Véronèse, T., & Evon, P. (2024). Insulation blocks made from sunflower pith with improved durability properties. Industrial Crops and Products, 210, 118161. doi:10.1016/j.indcrop.2024.118161.

Khalife, E., Sabouri, M., Kaveh, M., & Szymanek, M. (2024). Recent Advances in the Application of Agricultural Waste in Construction. Applied Sciences, 14(6), 2355. doi:10.3390/app14062355.

Tang, V. L., Bulgakov, B. I., Ngo, X. H., Aleksandrova, O. V., Larsen, O. A., Ha, H. K., & Melnikova, A. I. (2018). Effect of Rice Husk Ash on The Properties of Hydrotechnical Concrete. Vestnik MGSU, 6, 768–777. doi:10.22227/1997-0935.2018.6.768-777.

Kovekhova, A. V., Zemnukhova, L. A., & Zemnukhova, L. A. (2017). Inorganic Components of Sunflower Hulls. Proceedings of Universities Applied Chemistry and Biotechnology, 7(3), 9–18. doi:10.21285/2227-2925-2017-7-3-9-18.

GOST R 57813-2017/EN 12350-6:2009. (2009). Testing fresh concrete. Part 6. Density. National Standard of The Russian Federation, Moscow, Russia. (In Russian).

GOST R 57809-2017/EN 12350-2:2009. (2009). Testing fresh concrete. Part 2. Slump test. National Standard of The Russian Federation, Moscow, Russia. (In Russian).

EN 12390-1:2012. (2012). Testing hardened concrete. Shape, dimensions and other requirements for specimens and moulds. European Committee for Standardization, Brussels, Belgium.

EN 12390-2:2019; Testing hardened concrete—Part 2: Making and Curing Specimens for Strength Tests. European Committee for Standardization, Brussels, Belgium.

EN 12390-3:2019. (219). Testing hardened concrete—Part 3: Compressive Strength of Test Specimens. European Committee for Standardization, Brussels, Belgium.

EN 12390-4:2019. (2019). Testing Hardened Concrete—Part 4: Compressive Strength—Specification for Testing Machines. European Committee for Standardization, Brussels, Belgium.

EN 12390-7:2019. (2019). Testing hardened concrete—Part 7: Density of Hardened Concrete. European Committee for Standardization, Brussels, Belgium.

GOST 12730.3-2020. (2020). Concretes. Method of Determination of Water Absorption. National Standard of The Russian Federation, Moscow, Russia. (In Russian).

BS 1881-122:2011+A1:2020. (2020). Testing Concrete Method for Determination of Water Absorption. European Standards. British Standard Institute (BSI), London, United Kingdom.

GOST 7473-2010. (2010). Concrete mixes. Technical conditions. National Standard of The Russian Federation, Moscow, Russia. (In Russian).

Jittin, V., & Bahurudeen, A. (2022). Evaluation of rheological and durability characteristics of sugarcane bagasse ash and rice husk ash based binary and ternary cementitious system. Construction and Building Materials, 317, 125965. doi:10.1016/j.conbuildmat.2021.125965.

Msinjili, N. S., Schmidt, W., Mota, B., Leinitz, S., Kühne, H. C., & Rogge, A. (2017). The effect of superplasticizers on rheology and early hydration kinetics of rice husk ash-blended cementitious systems. Construction and Building Materials, 150, 511–519. doi:10.1016/j.conbuildmat.2017.05.197.

Lin, Y., Alengaram, U. J., & Ibrahim, Z. (2023). Effect of treated and untreated rice husk ash, palm oil fuel ash, and sugarcane bagasse ash on the mechanical, durability, and microstructure characteristics of blended concrete – A comprehensive review. Journal of Building Engineering, 78, 107500. doi:10.1016/j.jobe.2023.107500.

Trinh, N.D.; Vinh, N.T.; Bazhenov, Yu.M. (2012). High-strength Concretes with Integrated Use of Rice Husk Ash, Fly Ash and Superplasticizers. Vestnik MGSU 2012. 1, 77-82.

Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Mailyan, L. R., Meskhi, B., Smolyanichenko, A. S., & Beskopylny, N. (2022). High-Performance Concrete Nanomodified with Recycled Rice Straw Biochar. Applied Sciences (Switzerland), 12(11), 5480. doi:10.3390/app12115480.

Li, S., Liu, X., Xu, Y., Lai, G., Ding, Y., Chen, Y., Xia, C., Wang, Z., & Cui, S. (2022). Synthesis and Performances of Shrinkage-Reducing Polycarboxylate Superplasticizer in Cement-Based Materials. Materials, 15(19), 7002. doi:10.3390/ma15197002.

Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Mailyan, L. R., Meskhi, B., Smolyanichenko, A. S., Varavka, V., Beskopylny, N., & Dotsenko, N. (2022). Influence of Electromagnetic Activation of Cement Paste and Nano-Modification by Rice Straw Biochar on the Structure and Characteristics of Concrete. Journal of Composites Science, 6(9), 268. doi:10.3390/jcs6090268.

Lesnichenko, E. N., Chernysheva, N. V., Drebezgova., M. Y., Kovalenko, E. V., & Bocharnikov, A. L. (2022). Development of a Multicomponent Gypsum Cement Binder Using the Method of Mathematical Planning of the Experiment. Construction Materials and Products, 5(2), 5–12. doi:10.58224/2618-7183-2022-5-2-5-12.

Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Mailyan, L. R., Meskhi, B., Varavka, V., Beskopylny, N., & El’shaeva, D. (2022). A Study on the Cement Gel Formation Process during the Creation of Nanomodified High-Performance Concrete Based on Nanosilica. Gels, 8(6), 346. doi:10.3390/gels8060346.

Shcherban’, E. M., Stel’makh, S. A., Beskopylny, A., Mailyan, L. R., Meskhi, B., & Varavka, V. (2021). Nanomodification of lightweight fiber reinforced concrete with micro silica and its influence on the constructive quality coefficient. Materials, 14(23), 7347. doi:10.3390/ma14237347.

Șerbănoiu, A. A., Grădinaru, C. M., Muntean, R., Cimpoeșu, N., & Șerbănoiu, B. V. (2022). Corn Cob Ash versus Sunflower Stalk Ash, Two Sustainable Raw Materials in an Analysis of Their Effects on the Concrete Properties. Materials, 15(3), 868. doi:10.3390/ma15030868.

Mwilongo, K. P., Machunda, R. L., & Jande, Y. A. C. (2020). Effect of elevated temperature on compressive strength and physical properties of neem seed husk ash concrete. Materials, 13(5), 13. doi:10.3390/ma13051198.

Dharmaraj, R., Anandaraj, S., Sanjivnalan, N., Sathish Kumar, S., Shivash, N., & Srisharan, S. (2022). Experimental studies on the effect of neem seed powder (NSP) as a natural admixture in concrete. Materials Today: Proceedings, 52(3), 1997–2002. doi:10.1016/j.matpr.2021.11.634.

Ofuyatan, O. M., Olutoge, F., Omole, D., & Babafemi, A. (2021). Influence of palm ash on properties of light weight self-compacting concrete. Cleaner Engineering and Technology, 4, 100233. doi:10.1016/j.clet.2021.100233.

Chinnu, S. N., Minnu, S. N., Bahurudeen, A., & Senthilkumar, R. (2022). Influence of palm oil fuel ash in concrete and a systematic comparison with widely accepted fly ash and slag: A step towards sustainable reuse of agro-waste ashes. Cleaner Materials, 5, 100122. doi:10.1016/j.clema.2022.100122.

Abu Aisheh, Y. I. (2023). Palm oil fuel ash as a sustainable supplementary cementitious material for concrete: A state-of-the-art review. Case Studies in Construction Materials, 18, 1770. doi:10.1016/j.cscm.2022.e01770.

Rasid, N. N. A., Nur, N. H., Mohamed, A., Abdul, A. R., Majid, Z. A., & Huseien, G. F. (2023). Ground palm oil fuel ash and calcined eggshell powder as SiO2–CaO based accelerator in green concrete. Journal of Building Engineering, 65, 105617. doi:10.1016/j.jobe.2022.105617.

Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Mailyan, L. R., Meskhi, B., Beskopylny, N., El’shaeva, D., & Kotenko, M. (2022). The Investigation of Compacting Cement Systems for Studying the Fundamental Process of Cement Gel Formation. Gels, 8(9), 530. doi:10.3390/gels8090530.

Stel’makh, S. A., Shcherban’, E. M., Beskopylny, A., Mailyan, L. R., Meskhi, B., Beskopylny, N., & Zherebtsov, Y. (2022). Development of High-Tech Self-Compacting Concrete Mixtures Based on Nano-Modifiers of Various Types. Materials, 15(8), 2739. doi:10.3390/ma15082739.

Saleh, R. D., Hilal, N., & Sor, N. H. (2022). The Impact of a Large amount of Ultra-fine Sunflower Ash With/without Polypropylene Fiber on the Characteristics of Sustainable Self-compacting Concrete. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(5), 3709–3722. doi:10.1007/s40996-022-00845-6.

Affan, H., Arairo, W., & Arayro, J. (2023). Mechanical and thermal characterization of bio-sourced mortars made from agricultural and industrial by-products. Case Studies in Construction Materials, 18, 1939. doi:10.1016/j.cscm.2023.e01939.

Mailyan, L. R., Stel’makh, S. A., Shcherban, E. M., Zherebtsov, Y. V., & Al-Tulaikhi, M. M. (2021). Research of physicomechanical and design characteristics of vibrated, centrifuged and vibro-centrifuged concretes. Advanced Engineering Research, 21(1), 5–13. doi:10.23947/2687-1653-2021-21-1-5-13.

Grubeša, I. N., Radeka, M., Malešev, M., Radonjanin, V., Gojević, A., & Siddique, R. (2019). Strength and microstructural analysis of concrete incorporating ash from sunflower seed shells combustion. Structural Concrete, 20(1), 396–404. doi:10.1002/suco.201800036.

Grădinaru, C. M., Șerbănoiu, A. A., Muntean, R., & Șerbănoiu, B. V. (2021). The synergy between bio-aggregates and industrial waste in a sustainable cement-based composite. Materials, 14(20), 6158. doi:10.3390/ma14206158.

Șerbănoiu, A. A., Grădinaru, C. M., Cimpoeșu, N., Filipeanu, D., Șerbănoiu, B. V., & Cherecheș, N. C. (2021). Study of an ecological cement-based composite with a sustainable raw material, sunflower stalk ash. Materials, 14(23), 7177. doi:10.3390/ma14237177.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-05-08


  • There are currently no refbacks.

Copyright (c) 2024 Evgenii M. Shcherban', Sergey A. Stel'makh, Alexey N. Beskopylny, Levon R. Mailyan, Besarion Meskhi, Andrei Chernil’nik, Diana El'shaeva, Anastasia Pogrebnyak, Roman Yaschenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.