Influence of Sunflower Seed Husks Ash on the Structure Formation and Properties of Cement Concrete
Downloads
Doi: 10.28991/CEJ-2024-010-05-08
Full Text: PDF
Downloads
[2] Stel'makh, S. A., Beskopylny, A. N., Shcherban', E. M., Mailyan, L. R., Meskhi, B., Shilov, A. A., El'shaeva, D., Chernil'nik, A., & Kurilova, S. (2023). Alteration of Structure and Characteristics of Concrete with Coconut Shell as a Substitution of a Part of Coarse Aggregate. Materials, 16(12), 4422. doi:10.3390/ma16124422.
[3] Beskopylny, A. N., Stel'makh, S. A., Shcherban', E. M., Mailyan, L. R., Meskhi, B., Shilov, A. A., Chernil'nik, A., & El'shaeva, D. (2023). Effect of Walnut-Shell Additive on the Structure and Characteristics of Concrete. Materials, 16(4), 1752. doi:10.3390/ma16041752.
[4] AL-Oqla, F. M., Faris, H., Habib, M., & Castillo, P. A. (2023). Evolving Genetic Programming Tree Models for Predicting the Mechanical Properties of Green Fibers. Emerging Science Journal, 7(6), 1863-1874. doi:10.28991/ESJ-2023-07-06-02.
[5] Sorum, M. G., & Kalita, A. (2023). Effect of Bio-Cementation with Rice Husk Ash on Permeability of Silty Sand. Civil Engineering Journal (Iran), 9(11), 2854–2867. doi:10.28991/CEJ-2023-09-11-016.
[6] Ganesh, A. C., & Muthukannan, M. (2021). Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. Journal of Cleaner Production, 282, 124543. doi:10.1016/j.jclepro.2020.124543.
[7] He, J., Kawasaki, S., & Achal, V. (2020). The utilization of agricultural waste as agro-cement in concrete: A review. Sustainability (Switzerland), 12(17), 6971. doi:10.3390/SU12176971.
[8] Raheem, A. A., & Ikotun, B. D. (2020). Incorporation of agricultural residues as partial substitution for cement in concrete and mortar – A review. Journal of Building Engineering, 31, 101428. doi:10.1016/j.jobe.2020.101428.
[9] Salas Montoya, A., Chung, C. W., & Kim, J. H. (2023). High Performance Concretes with Highly Reactive Rice Husk Ash and Silica Fume. Materials, 16(11), 3903. doi:10.3390/ma16113903.
[10] Joel, S. (2020). Compressive strength of concrete using fly ash and rice husk ash: A review. Civil Engineering Journal (Iran), 6(7), 1400–1410. doi:10.28991/cej-2020-03091556.
[11] Endale, S. A., Taffese, W. Z., Vo, D. H., & Yehualaw, M. D. (2023). Rice Husk Ash in Concrete. Sustainability (Switzerland), 15(1), 137. doi:10.3390/su15010137.
[12] Zhang, W., Liu, H., & Liu, C. (2022). Impact of Rice Husk Ash on the Mechanical Characteristics and Freeze–Thaw Resistance of Recycled Aggregate Concrete. Applied Sciences (Switzerland), 12(23), 12238. doi:10.3390/app122312238.
[13] Kanthe, V., Deo, S., & Murmu, M. (2018). Combine use of fly ash and rice husk ash in concrete to improve its properties (research note). International Journal of Engineering, 31(7), 1012-1019. doi:10.5829/ije.2018.31.07a.02.
[14] Stratoura, M. C., Lazari, G. E. D., Badogiannis, E. G., & Papadakis, V. G. (2023). Perlite and Rice Husk Ash Re-Use as Fine Aggregates in Lightweight Aggregate Structural Concrete”Durability Assessment. Sustainability (Switzerland), 15(5), 4217. doi:10.3390/su15054217.
[15] Rani, G. Y., & Jaya Krishna, T. (2022). Effect of rice straw ash and micro silica on strength and durability of concrete. Materials Today: Proceedings, 60(3), 2151–2156. doi:10.1016/j.matpr.2022.02.107.
[16] Gursel, A. P., Maryman, H., & Ostertag, C. (2016). A life-cycle approach to environmental, mechanical, and durability properties of "green” concrete mixes with rice husk ash. Journal of Cleaner Production, 112(1), 823–836. doi:10.1016/j.jclepro.2015.06.029.
[17] Muhammad, A., & Thienel, K. C. (2023). Properties of Self-Compacting Concrete Produced with Optimized Volumes of Calcined Clay and Rice Husk Ash”Emphasis on Rheology, Flowability Retention and Durability. Materials, 16(16), 5513. doi:10.3390/ma16165513.
[18] Wang, H., Pang, J., & Xu, Y. (2023). Mechanical Properties and Microstructure of Rice Husk Ash–Rubber–Fiber Concrete under Hygrothermal Environment. Polymers, 15(11), 2415. doi:10.3390/polym15112415.
[19] Li, C., Mei, X., Dias, D., Cui, Z., & Zhou, J. (2023). Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model. Materials, 16(8), 3135. doi:10.3390/ma16083135.
[20] Malathy, R., Shanmugam, R., Chung, I. M., Kim, S. H., & Prabakaran, M. (2022). Mechanical and Microstructural Properties of Composite Mortars with Lime, Silica Fume and Rice Husk Ash. Processes, 10(7), 1424. doi:10.3390/pr10071424.
[21] Landa-Ruiz, L., Landa-Gómez, A., Mendoza-Rangel, J. M., Landa-Sánchez, A., Ariza-Figueroa, H., Méndez-Ramírez, C. T., Santiago-Hurtado, G., Moreno-Landeros, V. M., Croche, R., & Baltazar-Zamora, M. A. (2021). Physical, mechanical and durability properties of ecofriendly ternary concrete made with sugar cane bagasse ash and silica fume. Crystals, 11(9), 1012. doi:10.3390/cryst11091012.
[22] Sebastin, S., Priya, A. K., Karthick, A., Sathyamurthy, R., & Ghosh, A. (2020). Agro Waste Sugarcane Bagasse as a Cementitious Material for Reactive Powder Concrete. Clean Technologies, 2(4), 476–491. doi:10.3390/cleantechnol2040030.
[23] França, S., Sousa, L. N., Saraiva, S. L. C., Ferreira, M. C. N. F., Silva, M. V. de M. S., Gomes, R. C., Rodrigues, C. de S., Aguilar, M. T. P., & Bezerra, A. C. da S. (2023). Feasibility of Using Sugar Cane Bagasse Ash in Partial Replacement of Portland Cement Clinker. Buildings, 13(4), 843. doi:10.3390/buildings13040843.
[24] Xu, Q., Ji, T., Gao, S. J., Yang, Z., & Wu, N. (2018). Characteristics and applications of sugar cane bagasse ash waste in cementitious materials. Materials, 12(1), 39. doi:10.3390/ma12010039.
[25] Rossignolo, J. A., Rodrigues, M. S., Frias, M., Santos, S. F., & Junior, H. S. (2017). Improved interfacial transition zone between aggregate-cementitious matrix by addition sugarcane industrial ash. Cement and Concrete Composites, 80, 157–167. doi:10.1016/j.cemconcomp.2017.03.011.
[26] De Soares, M. M. N. S., Garcia, D. C. S., Figueiredo, R. B., Aguilar, M. T. P., & Cetlin, P. R. (2016). Comparing the pozzolanic behavior of sugar cane bagasse ash to amorphous and crystalline SiO2. Cement and Concrete Composites, 71, 20–25. doi:10.1016/j.cemconcomp.2016.04.005.
[27] Tchakouté, H. K., Rüscher, C. H., Hinsch, M., Djobo, J. N. Y., Kamseu, E., & Leonelli, C. (2017). Utilization of sodium waterglass from sugar cane bagasse ash as a new alternative hardener for producing metakaolin-based geopolymer cement. Chemie Der Erde, 77(2), 257–266. doi:10.1016/j.chemer.2017.04.003.
[28] Frías, M., Villar, E., & Savastano, H. (2011). Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cement and Concrete Composites, 33(4), 490–496. doi:10.1016/j.cemconcomp.2011.02.003.
[29] Marzouk, H. A., Arab, M. A., Fattouh, M. S., & Hamouda, A. S. (2023). Effect of Agricultural Phragmites, Rice Straw, Rice Husk, and Sugarcane Bagasse Ashes on the Properties and Microstructure of High-Strength Self-Compacted Self-Curing Concrete. Buildings, 13(9), 2394. doi:10.3390/buildings13092394.
[30] Lertwattanaruk, P., & Makul, N. (2021). Influence of ground calcium carbonate waste on the properties of green self-consolidating concrete prepared by low-quality bagasse ash and rice husk ash. Materials, 14(15), 4232. doi:10.3390/ma14154232.
[31] Baeza-Brotons, F., Payá, J., Galao, O., Alberti, M. G., & Garcés, P. (2020). Concrete for precast blocks: Binary and ternary combination of sewage sludge ash with diverse mineral residue. Materials, 13(20), 1–19. doi:10.3390/ma13204634.
[32] Mwilongo, K. P., Machunda, R. L., & Jande, Y. A. C. (2020). Effect of elevated temperature on compressive strength and physical properties of neem seed husk ash concrete. Materials, 13(5), 13. doi:10.3390/ma13051198.
[33] Maraveas, C. (2020). Production of sustainable construction materials using agro-wastes. Materials, 13(2), 262. doi:10.3390/ma13020262.
[34] Paul, S. C., Mbewe, P. B. K., Kong, S. Y., & Š avija, B. (2019). Agricultural solid waste as source of supplementary cementitious materials in developing countries. Materials, 12(7), 1112. doi:10.3390/ma12071112.
[35] Shahbazpanahi, S., & Faraj, R. H. (2020). Feasibility study on the use of shell sunflower ash and shell pumpkin ash as supplementary cementitious materials in concrete. Journal of Building Engineering, 30, 101271. doi:10.1016/j.jobe.2020.101271.
[36] Quaranta, N., Unsen, M., López, H., Giansiracusa, C., Roether, J. A., & Boccaccini, A. R. (2011). Ash from sunflower husk as raw material for ceramic products. Ceramics International, 37(1), 377–385. doi:10.1016/j.ceramint.2010.09.015.
[37] Zhu, Z., Zhang, C., Liu, R., Li, S., & Wang, M. (2023). Sunflower straw ash as an alternative activator in alkali-activated grouts: A new 100% waste-based material. Ceramics International, 49(19), 32308–32312. doi:10.1016/j.ceramint.2023.06.306.
[38] Balador, Z. (2024). Agricultural by-products as construction materials. Sustainability and Toxicity of Building Materials, 263–287, Woodhead Publishing, Cambridge, United Kingdom. doi:10.1016/b978-0-323-98336-5.00013-3.
[39] Bakkour, A., Ouldboukhitine, S. E., Biwole, P., & Amziane, S. (2024). A review of multi-scale hygrothermal characteristics of plant-based building materials. Construction and Building Materials, 412, 134850. doi:10.1016/j.conbuildmat.2023.134850.
[40] Novi, V., Labonne, L., Ballas, S., Véronèse, T., & Evon, P. (2024). Insulation blocks made from sunflower pith with improved durability properties. Industrial Crops and Products, 210, 118161. doi:10.1016/j.indcrop.2024.118161.
[41] Khalife, E., Sabouri, M., Kaveh, M., & Szymanek, M. (2024). Recent Advances in the Application of Agricultural Waste in Construction. Applied Sciences, 14(6), 2355. doi:10.3390/app14062355.
[42] Tang, V. L., Bulgakov, B. I., Ngo, X. H., Aleksandrova, O. V., Larsen, O. A., Ha, H. K., & Melnikova, A. I. (2018). Effect of Rice Husk Ash on The Properties of Hydrotechnical Concrete. Vestnik MGSU, 6, 768–777. doi:10.22227/1997-0935.2018.6.768-777.
[43] Kovekhova, A. V., Zemnukhova, L. A., & Zemnukhova, L. A. (2017). Inorganic Components of Sunflower Hulls. Proceedings of Universities Applied Chemistry and Biotechnology, 7(3), 9–18. doi:10.21285/2227-2925-2017-7-3-9-18.
[44] GOST R 57813-2017/EN 12350-6:2009. (2009). Testing fresh concrete. Part 6. Density. National Standard of The Russian Federation, Moscow, Russia. (In Russian).
[45] GOST R 57809-2017/EN 12350-2:2009. (2009). Testing fresh concrete. Part 2. Slump test. National Standard of The Russian Federation, Moscow, Russia. (In Russian).
[46] EN 12390-1:2012. (2012). Testing hardened concrete. Shape, dimensions and other requirements for specimens and moulds. European Committee for Standardization, Brussels, Belgium.
[47] EN 12390-2:2019; Testing hardened concrete”Part 2: Making and Curing Specimens for Strength Tests. European Committee for Standardization, Brussels, Belgium.
[48] EN 12390-3:2019. (219). Testing hardened concrete”Part 3: Compressive Strength of Test Specimens. European Committee for Standardization, Brussels, Belgium.
[49] EN 12390-4:2019. (2019). Testing Hardened Concrete”Part 4: Compressive Strength”Specification for Testing Machines. European Committee for Standardization, Brussels, Belgium.
[50] EN 12390-7:2019. (2019). Testing hardened concrete”Part 7: Density of Hardened Concrete. European Committee for Standardization, Brussels, Belgium.
[51] GOST 12730.3-2020. (2020). Concretes. Method of Determination of Water Absorption. National Standard of The Russian Federation, Moscow, Russia. (In Russian).
[52] BS 1881-122:2011+A1:2020. (2020). Testing Concrete Method for Determination of Water Absorption. European Standards. British Standard Institute (BSI), London, United Kingdom.
[53] GOST 7473-2010. (2010). Concrete mixes. Technical conditions. National Standard of The Russian Federation, Moscow, Russia. (In Russian).
[54] Jittin, V., & Bahurudeen, A. (2022). Evaluation of rheological and durability characteristics of sugarcane bagasse ash and rice husk ash based binary and ternary cementitious system. Construction and Building Materials, 317, 125965. doi:10.1016/j.conbuildmat.2021.125965.
[55] Msinjili, N. S., Schmidt, W., Mota, B., Leinitz, S., Kühne, H. C., & Rogge, A. (2017). The effect of superplasticizers on rheology and early hydration kinetics of rice husk ash-blended cementitious systems. Construction and Building Materials, 150, 511–519. doi:10.1016/j.conbuildmat.2017.05.197.
[56] Lin, Y., Alengaram, U. J., & Ibrahim, Z. (2023). Effect of treated and untreated rice husk ash, palm oil fuel ash, and sugarcane bagasse ash on the mechanical, durability, and microstructure characteristics of blended concrete – A comprehensive review. Journal of Building Engineering, 78, 107500. doi:10.1016/j.jobe.2023.107500.
[57] Trinh, N.D.; Vinh, N.T.; Bazhenov, Yu.M. (2012). High-strength Concretes with Integrated Use of Rice Husk Ash, Fly Ash and Superplasticizers. Vestnik MGSU 2012. 1, 77-82.
[58] Beskopylny, A. N., Stel'makh, S. A., Shcherban', E. M., Mailyan, L. R., Meskhi, B., Smolyanichenko, A. S., & Beskopylny, N. (2022). High-Performance Concrete Nanomodified with Recycled Rice Straw Biochar. Applied Sciences (Switzerland), 12(11), 5480. doi:10.3390/app12115480.
[59] Li, S., Liu, X., Xu, Y., Lai, G., Ding, Y., Chen, Y., Xia, C., Wang, Z., & Cui, S. (2022). Synthesis and Performances of Shrinkage-Reducing Polycarboxylate Superplasticizer in Cement-Based Materials. Materials, 15(19), 7002. doi:10.3390/ma15197002.
[60] Beskopylny, A. N., Stel'makh, S. A., Shcherban', E. M., Mailyan, L. R., Meskhi, B., Smolyanichenko, A. S., Varavka, V., Beskopylny, N., & Dotsenko, N. (2022). Influence of Electromagnetic Activation of Cement Paste and Nano-Modification by Rice Straw Biochar on the Structure and Characteristics of Concrete. Journal of Composites Science, 6(9), 268. doi:10.3390/jcs6090268.
[61] Lesnichenko, E. N., Chernysheva, N. V., Drebezgova., M. Y., Kovalenko, E. V., & Bocharnikov, A. L. (2022). Development of a Multicomponent Gypsum Cement Binder Using the Method of Mathematical Planning of the Experiment. Construction Materials and Products, 5(2), 5–12. doi:10.58224/2618-7183-2022-5-2-5-12.
[62] Beskopylny, A. N., Stel'makh, S. A., Shcherban', E. M., Mailyan, L. R., Meskhi, B., Varavka, V., Beskopylny, N., & El'shaeva, D. (2022). A Study on the Cement Gel Formation Process during the Creation of Nanomodified High-Performance Concrete Based on Nanosilica. Gels, 8(6), 346. doi:10.3390/gels8060346.
[63] Shcherban', E. M., Stel'makh, S. A., Beskopylny, A., Mailyan, L. R., Meskhi, B., & Varavka, V. (2021). Nanomodification of lightweight fiber reinforced concrete with micro silica and its influence on the constructive quality coefficient. Materials, 14(23), 7347. doi:10.3390/ma14237347.
[64] Șerbănoiu, A. A., Grădinaru, C. M., Muntean, R., Cimpoeșu, N., & Șerbănoiu, B. V. (2022). Corn Cob Ash versus Sunflower Stalk Ash, Two Sustainable Raw Materials in an Analysis of Their Effects on the Concrete Properties. Materials, 15(3), 868. doi:10.3390/ma15030868.
[65] Mwilongo, K. P., Machunda, R. L., & Jande, Y. A. C. (2020). Effect of elevated temperature on compressive strength and physical properties of neem seed husk ash concrete. Materials, 13(5), 13. doi:10.3390/ma13051198.
[66] Dharmaraj, R., Anandaraj, S., Sanjivnalan, N., Sathish Kumar, S., Shivash, N., & Srisharan, S. (2022). Experimental studies on the effect of neem seed powder (NSP) as a natural admixture in concrete. Materials Today: Proceedings, 52(3), 1997–2002. doi:10.1016/j.matpr.2021.11.634.
[67] Ofuyatan, O. M., Olutoge, F., Omole, D., & Babafemi, A. (2021). Influence of palm ash on properties of light weight self-compacting concrete. Cleaner Engineering and Technology, 4, 100233. doi:10.1016/j.clet.2021.100233.
[68] Chinnu, S. N., Minnu, S. N., Bahurudeen, A., & Senthilkumar, R. (2022). Influence of palm oil fuel ash in concrete and a systematic comparison with widely accepted fly ash and slag: A step towards sustainable reuse of agro-waste ashes. Cleaner Materials, 5, 100122. doi:10.1016/j.clema.2022.100122.
[69] Abu Aisheh, Y. I. (2023). Palm oil fuel ash as a sustainable supplementary cementitious material for concrete: A state-of-the-art review. Case Studies in Construction Materials, 18, 1770. doi:10.1016/j.cscm.2022.e01770.
[70] Rasid, N. N. A., Nur, N. H., Mohamed, A., Abdul, A. R., Majid, Z. A., & Huseien, G. F. (2023). Ground palm oil fuel ash and calcined eggshell powder as SiO2–CaO based accelerator in green concrete. Journal of Building Engineering, 65, 105617. doi:10.1016/j.jobe.2022.105617.
[71] Beskopylny, A. N., Stel'makh, S. A., Shcherban', E. M., Mailyan, L. R., Meskhi, B., Beskopylny, N., El'shaeva, D., & Kotenko, M. (2022). The Investigation of Compacting Cement Systems for Studying the Fundamental Process of Cement Gel Formation. Gels, 8(9), 530. doi:10.3390/gels8090530.
[72] Stel'makh, S. A., Shcherban', E. M., Beskopylny, A., Mailyan, L. R., Meskhi, B., Beskopylny, N., & Zherebtsov, Y. (2022). Development of High-Tech Self-Compacting Concrete Mixtures Based on Nano-Modifiers of Various Types. Materials, 15(8), 2739. doi:10.3390/ma15082739.
[73] Saleh, R. D., Hilal, N., & Sor, N. H. (2022). The Impact of a Large amount of Ultra-fine Sunflower Ash With/without Polypropylene Fiber on the Characteristics of Sustainable Self-compacting Concrete. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(5), 3709–3722. doi:10.1007/s40996-022-00845-6.
[74] Affan, H., Arairo, W., & Arayro, J. (2023). Mechanical and thermal characterization of bio-sourced mortars made from agricultural and industrial by-products. Case Studies in Construction Materials, 18, 1939. doi:10.1016/j.cscm.2023.e01939.
[75] Mailyan, L. R., Stel'makh, S. A., Shcherban, E. M., Zherebtsov, Y. V., & Al-Tulaikhi, M. M. (2021). Research of physicomechanical and design characteristics of vibrated, centrifuged and vibro-centrifuged concretes. Advanced Engineering Research, 21(1), 5–13. doi:10.23947/2687-1653-2021-21-1-5-13.
[76] GrubeŠ¡a, I. N., Radeka, M., MaleŠ¡ev, M., Radonjanin, V., Gojević, A., & Siddique, R. (2019). Strength and microstructural analysis of concrete incorporating ash from sunflower seed shells combustion. Structural Concrete, 20(1), 396–404. doi:10.1002/suco.201800036.
[77] Grădinaru, C. M., Șerbănoiu, A. A., Muntean, R., & Șerbănoiu, B. V. (2021). The synergy between bio-aggregates and industrial waste in a sustainable cement-based composite. Materials, 14(20), 6158. doi:10.3390/ma14206158.
[78] Șerbănoiu, A. A., Grădinaru, C. M., Cimpoeșu, N., Filipeanu, D., Șerbănoiu, B. V., & Cherecheș, N. C. (2021). Study of an ecological cement-based composite with a sustainable raw material, sunflower stalk ash. Materials, 14(23), 7177. doi:10.3390/ma14237177.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.