Evaluation of Alkali-Activated Mortar Incorporating Combined and Uncombined Fly Ash and GGBS Enhanced with Nano Alumina

Barham Ali


The present research focuses on assessing the fresh and hardened properties as well as the durability performance of alkali-activated mortar in an ambient environment and the impact of integrating nano-alumina (NA) at a 2% ratio as a substitute for binder materials in alkali-activated mortar (AAM). Additionally, it assesses the effectiveness of alkali-activated mortar employing different blends of ground granulated blast furnace slag (GGBS) and fly ash as environmentally friendly substitute building materials. Fly ash (FA), ground granulated blast slag (GGBS), and an equal mixture of GGBS and FA make up these binder ingredients. As a result, the main binders contain GGBS, FA, or a 50/50 mixture of GGBS and FA. The sodium hydroxide (NaOH) concentration is fixed at a 12-molarity level, and the alkali activator solution to binder ratio is kept at 0.5. In the alkali solution, the ratio of sodium silicate to sodium hydroxide is always 2.5. The study evaluates various properties of AAM, such as compressive strength, flowability, unit weight, flexural tensile strength, and durability, under ambient conditions at a steady room temperature of 23±3°C. Results indicate that AAM mixtures devoid of NA exhibit a higher flow rate compared to those containing NA. Nonetheless, the flowability of AAM mixtures aligns well with standard requirements, being modest yet adequate. Significantly, the inclusion of NA enhances the mechanical properties and durability of AAM, demonstrating its beneficial effects.


Doi: 10.28991/CEJ-2024-010-03-016

Full Text: PDF


Alkali Activated Mortar; Nano Alumina; Mechanical Properties; Durability; Fresh Properties.


McCaffrey, R. (2002). Climate change and the cement industry. Global cement and lime magazine (Environmental Special Issue), 15–19.

Malhotra, V. M., & Mehta, P. K. (2008). High performance, high-volume fly ash concrete for building sustainable and durable structure (3rd Ed.). American Coal Ash Association (ACAA) Publication, Denver, United Sattes.

Davidovits, J. (1991). Geopolymers - Inorganic polymeric new materials. Journal of Thermal Analysis, 37(8), 1633–1656. doi:10.1007/BF01912193.

Gharzouni, A., Samet, B., Baklouti, S., Joussein, E., & Rossignol, S. (2016). Addition of low reactive clay into metakaolin-based geopolymer formulation: Synthesis, existence domains and properties. Powder Technology, 288, 212–220. doi:10.1016/j.powtec.2015.11.012.

Davidovit, J. (2008). Geopolymer Chemistry and Applications (5th Ed.). Geopolymer Institute, Saint-Quentin, France.

Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90. doi:10.1016/j.conbuildmat.2015.03.036.

Khale, D., & Chaudhary, R. (2007). Mechanism of geopolymerization and factors influencing its development: A review. Journal of Materials Science, 42(3), 729–746. doi:10.1007/s10853-006-0401-4.

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. ACI Materials Journal, 101(6), 467–472. doi:10.14359/13485.

Reddy, M. S., Dinakar, P., & Rao, B. H. (2016). A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete. Microporous and Mesoporous Materials, 234, 12–23. doi:10.1016/j.micromeso.2016.07.005.

Naik, T. R. (2007). Sustainability of the cement and concrete industries. Proceedings of the International Conference on Achieving Sustainability in Construction, 19–25, doi:10.1680/asic.34044.0017.

Kubba, Z., Fahim Huseien, G., Sam, A. R. M., Shah, K. W., Asaad, M. A., Ismail, M., Tahir, M. M., & Mirza, J. (2018). Impact of curing temperatures and alkaline activators on compressive strength and porosity of ternary blended geopolymer mortars. Case Studies in Construction Materials, 9, 205. doi:10.1016/j.cscm.2018.e00205.

Sumesh, M., Alengaram, U. J., Jumaat, M. Z., Mo, K. H., & Alnahhal, M. F. (2017). Incorporation of nano-materials in cement composite and geopolymer based paste and mortar – A review. Construction and Building Materials, 148, 62–84. doi:10.1016/j.conbuildmat.2017.04.206.

Görhan, G., Aslaner, R., & Şinik, O. (2016). The effect of curing on the properties of metakaolin and fly ash-based geopolymer paste. Composites Part B: Engineering, 97, 329–335. doi:10.1016/j.compositesb.2016.05.019.

Çevik, A., Alzeebaree, R., Humur, G., Niş, A., & Gülşan, M. E. (2018). Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceramics International, 44(11), 12253–12264. doi:10.1016/j.ceramint.2018.04.009.

Qing, Y., Zenan, Z., Deyu, K., & Rongshen, C. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction and Building Materials, 21(3), 539–545. doi:10.1016/j.conbuildmat.2005.09.001.

Li, H., Xiao, H. G., Yuan, J., & Ou, J. (2004). Microstructure of cement mortar with nano-particles. Composites Part B: Engineering, 35(2), 185–189. doi:10.1016/S1359-8368(03)00052-0.

Sobolev, K., Flores, I., Hermosillo, R., & Torres-Martínez, L. M. (2006). Nanomaterials and nanotechnology for high-performance cement composites. Proceedings of ACI session on nanotechnology of concrete: recent developments and future perspectives, 7 November, 2006, United States.

Quercia, G., & Brouwers, H. J. H. (2010). Application of nano-silica (nS) in concrete mixtures. 8th fib Ph.D. Symposium in KGS, 20-23 June, 2010, Lyngby, Denmark.

Belkowitz, J., & Armentrout, D. L. (2009). The investigation of nano silica in the cement hydration process. Master Thesis, University of Denver, Colorado, United States.

Alzeebaree, R., Çevik, A., Mohammedameen, A., Niş, A., & Gülşan, M. E. (2020). Mechanical performance of FRP-confined geopolymer concrete under seawater attack. Advances in Structural Engineering, 23(6), 1055–1073. doi:10.1177/1369433219886964.

Alzeebaree, R., Gülsan, M. E., Nis, A., Mohammedameen, A., & Cevik, A. (2018). Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks. Steel and Composite Structures, 29(2), 201–218. doi:10.12989/scs.2018.29.2.201.

Phoo-ngernkham, T., Chindaprasirt, P., Sata, V., Hanjitsuwan, S., & Hatanaka, S. (2014). The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Materials and Design, 55, 58–65. doi:10.1016/j.matdes.2013.09.049.

Xavier, C. S. B., & Rahim, A. (2022). Nano aluminium oxide geopolymer concrete: An experimental study. Materials Today: Proceedings, 56, 1643–1647. doi:10.1016/j.matpr.2021.10.070.

Puligilla, S., & Mondal, P. (2013). Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cement and Concrete Research, 43(1), 70–80. doi:10.1016/j.cemconres.2012.10.004.

Central Electrical Authority (CEA). (2015). Report on fly ash generation at coal/lignite based thermal power stations and its utilization in the country for the year 2014-2015. Central Electricity Authority (CEA), New Delhi, India.

Adak, D., Sarkar, M., & Mandal, S. (2014). Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Construction and Building Materials, 70, 453–459. doi:10.1016/j.conbuildmat.2014.07.093.

Okoye, F. N., Durgaprasad, J., & Singh, N. B. (2016). Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceramics International, 42(2), 3000-3006. doi:10.1016/j.ceramint.2015.10.084.

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. (2007). Geopolymer technology: the current state of the art. Journal of materials science, 42, 2917-2933. doi:10.1007/s10853-006-0637-z.

Ning, Y., Fielding, L. A., Nutter, J., Kulak, A. N., Meldrum, F. C., & Armes, S. P. (2019). Spatially Controlled Occlusion of Polymer-Stabilized Gold Nanoparticles within ZnO. Angewandte Chemie - International Edition, 58(13), 4302–4307. doi:10.1002/anie.201814492.

Lee, W. H., Wang, J. H., Ding, Y. C., & Cheng, T. W. (2019). A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete. Construction and Building Materials, 211, 807–813. doi:10.1016/j.conbuildmat.2019.03.291.

Chishi, A. K., & Gautam, L. (2023). Sustainable use of silica fume in green cement concrete production: a review. Innovative Infrastructure Solutions, 8(7), 195. doi:10.1007/s41062-023-01164-z.

Khanday, S. A., Hussain, M., & Das, A. K. (2023). Durability of peat stabilized by RHA based geopolymer formed by adding pure alumina and bauxite powder. European Journal of Environmental and Civil Engineering, 27(13), 3812–3833. doi:10.1080/19648189.2022.2154851.

Jethwani, R., Thakur, M. S., & Das Adhikary, S. (2020). Development of Geopolymer Concrete for Sustainable Infrastructures. Advances in Sustainable Construction Materials and Geotechnical Engineering. Lecture Notes in Civil Engineering, 35, Springer, Singapore. doi:10.1007/978-981-13-7480-7_1.

Hassan, A., Arif, M., & Shariq, M. (2019). Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure. Journal of Cleaner Production, 223, 704–728. doi:10.1016/j.jclepro.2019.03.051.

Mallikarjuna Rao, G., & Gunneswara Rao, T. D. (2015). Final Setting Time and Compressive Strength of Fly Ash and GGBS-Based Geopolymer Paste and Mortar. Arabian Journal for Science and Engineering, 40(11), 3067–3074. doi:10.1007/s13369-015-1757-z.

Hua, X., Provis, J. L., Van Deventer, J. S. J., & Krivenko, P. V. (2008). Characterization of Aged Slag Concretes. ACI Materials Journal, 105(2), 131–139. doi:10.14359/19753.

Liu, Z., Takasu, K., Koyamada, H., & Suyama, H. (2022). A study on engineering properties and environmental impact of sustainable concrete with fly ash or GGBS. Construction and Building Materials, 316, 125776. doi:10.1016/j.conbuildmat.2021.125776.

Bilodeau, A., & Mohan Malhotra, V. (2000). High-volume fly ash system: Concrete solution for sustainable development. ACI Structural Journal, 97(1), 41–48. doi:10.14359/804.

Gupta, S., & Chaudhary, S. (2020). Use of fly ash for the development of sustainable construction materials. New Materials in Civil Engineering, 677–689, Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/b978-0-12-818961-0.00021-1.

Nayak, D. K., Abhilash, P. P., Singh, R., Kumar, R., & Kumar, V. (2022). Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. Cleaner Materials, 6, 100143. doi:10.1016/j.clema.2022.100143.

Xu, G., & Shi, X. (2018). Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. Resources, Conservation and Recycling, 136, 95–109. doi:10.1016/j.resconrec.2018.04.010.

Arivalagan, S. (2014). Sustainable studies on concrete with GGBS as a replacement material in cement. Jordan Journal of Civil Engineering, 8(3), 263–270.

Higgins, D. (2007). Briefing: GGBS and sustainability. Proceedings of the Institution of Civil Engineers - Construction Materials, 160(3), 99–101. doi:10.1680/coma.2007.160.3.99.

Saeed, N. M., Omer, B., Jamal, A. S., & Dheyaaldin, M. H. (2023). Performance of cement mortar modified with GGBFS at elevated temperatures with various w/b ratios and superplasticizer dosages. Construction and Building Materials, 368, 130493. doi:10.1016/j.conbuildmat.2023.130493.

Pacheco-Torgal, F., & Jalali, S. (2011). Nanotechnology: Advantages and drawbacks in the field of construction and building materials. Construction and Building Materials, 25(2), 582–590. doi:10.1016/j.conbuildmat.2010.07.009.

Ahmad, J., Kontoleon, K. J., Majdi, A., Naqash, M. T., Deifalla, A. F., Ben Kahla, N., Isleem, H. F., & Qaidi, S. M. A. (2022). A Comprehensive Review on the Ground Granulated Blast Furnace Slag (GGBS) in Concrete Production. Sustainability (Switzerland), 14(14), 8783. doi:10.3390/su14148783.

Yilmazoglu, A., Yildirim, S. T., Behçet, Ö. F., & Yıldız, S. (2022). Performance evaluation of fly ash and ground granulated blast furnace slag-based geopolymer concrete: A comparative study. Structural Concrete, 23(6), 3898–3915. doi:10.1002/suco.202100835.

Mohammed, M., Shafiq, N., Abdallah, N. A. W., Ayoub, M., & Haruna, A. (2020). A review on achieving sustainable construction waste management through application of 3R (reduction, reuse, recycling): A lifecycle approach. IOP Conference Series: Earth and Environmental Science, 476(1). doi:10.1088/1755-1315/476/1/012010.

ASTM C618-22. (2002). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-22.

Riahi, S., & Nazari, A. (2012). RETRACTED: The effects of nanoparticles on early age compressive strength of ash-based geopolymers. Ceramics International, 38(6), 4467–4476. doi:10.1016/j.ceramint.2012.02.021.

T. O. (2014). Experimental Investigations on Strength, Durability, Sustainability and Economic Characteristics of Geo-Polymer Concrete Blocks. International Journal of Research in Engineering and Technology, 3(6), 115–122. doi:10.15623/ijret.2014.0306021.

Assaedi, H., Shaikh, F. U. A., & Low, I. M. (2017). Effect of nanoclay on durability and mechanical properties of flax fabric reinforced geopolymer composites. Journal of Asian Ceramic Societies, 5(1), 62–70. doi:10.1016/j.jascer.2017.01.003.

Saini, G., & Vattipalli, U. (2020). Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica. Case Studies in Construction Materials, 12, 352. doi:10.1016/j.cscm.2020.e00352.

Singh, B., Rahman, M. R., Paswan, R., & Bhattacharyya, S. K. (2016). Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Construction and Building Materials, 118, 171–179. doi:10.1016/j.conbuildmat.2016.05.008.

Alzeebaree, R., Çevik, A., Nematollahi, B., Sanjayan, J., Mohammedameen, A., & Gülşan, M. E. (2019). Mechanical properties and durability of unconfined and confined geopolymer concrete with fiber reinforced polymers exposed to sulfuric acid. Construction and Building Materials, 215, 1015–1032. doi:10.1016/j.conbuildmat.2019.04.165.

Dheyaaldin, M. H., Mosaberpanah, M. A., & Alzeebaree, R. (2022). Performance of Fiber‐Reinforced Alkali‐Activated Mortar with/without Nano Silica and Nano Alumina. Sustainability (Switzerland), 14(5), 2527. doi:10.3390/su14052527.

Dheyaaldin, M. H., Mosaberpanah, M. A., & Alzeebaree, R. (2022). Shrinkage behavior and mechanical properties of alkali activated mortar incorporating nanomaterials and polypropylene fiber. Ceramics International, 48(16), 23159–23171. doi:10.1016/j.ceramint.2022.04.297.

Gülşan, M. E., Alzeebaree, R., Rasheed, A. A., Niş, A., & Kurtoğlu, A. E. (2019). Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Construction and Building Materials, 211, 271–283. doi:10.1016/j.conbuildmat.2019.03.228.

ASTM C109/C109M-20. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International, Pennsylvania. United States. doi:10.1520/C0109_C0109M-20.

ASTM C348-21. (2021). Flexural strength of hydraulic-cement mortars. ASTM International, Pennsylvanian United States. doi:10.1520/C0348-21.

Mohammedameen, A., Younis, K. H., Alzeebaree, R., Arbili, M. M., & Ibrahim, T. K. (2022). Performance of Self-compacting Geopolymer Concrete with and Without Portland Cement at Ambient Temperature. Geotechnical Engineering and Sustainable Construction. Springer, Singapore. doi:10.1007/978-981-16-6277-5_52.

Kurtoglu, A. E., Cevik, A., Farhan, O. H., Alzeebaree, R., Gülşan, E., & Kurtoglu, A. E.; Cevik, A.; Farhan, O. H..; Alzeebaree, R.; Gülşan, M. E. (2017). Sea Water Resistance of Fly Ash- and Slag-Based Geopolymer. 2nd International Energy & Engineering Conference, 12-13 October, 2017, Gaziantep, Turkey.

Mohammedameen, A., Gülşan, M. E., Alzeebaree, R., Çevik, A., & Niş, A. (2019). Mechanical and durability performance of FRP confined and unconfined strain hardening cementitious composites exposed to sulfate attack. Construction and Building Materials, 207, 158–173. doi:10.1016/j.conbuildmat.2019.02.108.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-03-016


  • There are currently no refbacks.

Copyright (c) 2024 Barham Ali

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.