The Effectiveness of Inclined Pile Breakwater on the Transmission Coefficient

Lukman Nurzaman, Pitojo Tri Juwono, Very Dermawan, Indradi Wijatmiko

Abstract


A breakwater is a structure designed to protect coastal areas by breaking and reducing the force of incoming waves. Waves that propagate through a wave dampening building will have some of their energy reflected (reflection), some of their energy transmitted (transmission), and some of their energy destroyed (dissipation). The effectiveness of wave-breaking structures in protecting coastal and harbor waters can be seen from how much wave energy the building can reduce. In this research, the performance of the wave breaker will be seen from the values of wave transmission (Kt) and wave reflection (Kr) with an inclined pile building structure. Reflection and transmission analysis of the results of 2D physical model testing of wave breakers with inclined pile structures are needed to optimize their use. Laboratory test results prove that this Inclined Pile Structure breakwater is quite effective in scenarios that have smaller Kt values and larger Kr values. In this experiment, testing was carried out with several parameters, namely the slope of the pile, the distance between the piles in one row (or distance between pillars), the distance between the tops of the piles (or distance between rows of piles), and the depth of the water. The Kt value in the model α=45°; D=1.69 cm; b=5 cm is 0.603 compared to the model α=60°; D=1.69cm; b=5 cm, Kt value is 0.652. This shows that the inclined pile structure of breakwater is more effective with a pile slope of 45° than with a pile slope of 60°.

 

Doi: 10.28991/CEJ-2024-010-06-09

Full Text: PDF


Keywords


Inclined Pile Breakwater; Reflection; Transmission; Wave.

References


Elsharnouby, B., Soliman, A., Elnaggar, M., & Elshahat, M. (2012). Study of environment friendly porous suspended breakwater for the Egyptian Northwestern Coast. Ocean Engineering, 48, 47–58. doi:10.1016/j.oceaneng.2012.03.012.

Wang, G., Ren, B., & Wang, Y. (2016). Experimental study on hydrodynamic performance of arc plate breakwater. Ocean Engineering, 111, 593–601. doi:10.1016/j.oceaneng.2015.11.016.

Hayashi, T., & Kano, T. (1966). Hydraulic Research on The Closely Spaced Pile Breakwater. Coastal Engineering Proceedings, 10, 49. doi:10.9753/icce.v10.49.

Alsaydalani, M. O., Saif, M. A. N., & Helal, M. M. (2017). Hydrodynamic characteristics of three rows of vertical slotted wall breakwaters. Journal of Marine Science and Application, 16(3), 261–275. doi:10.1007/s11804-017-1427-5.

Peng, J., Li, K., Gu, S., & Cong, Y. (2023). Numerical simulation of the interaction between waves and pile breakwater with horizontal slotted plates. Ocean Engineering, 287, 115777. doi:10.1016/j.oceaneng.2023.115777.

Laju, K., Sundar, V., & Sundaravadivelu, R. (2011). Hydrodynamic characteristics of pile supported skirt breakwater models. Applied Ocean Research, 33(1), 12–22. doi:10.1016/j.apor.2010.12.004.

Oumeraci, H. (1994). Review and analysis of vertical breakwater failures - lessons learned. Coastal Engineering, 22(1–2), 3–29. doi:10.1016/0378-3839(94)90046-9.

Le Xuan, T., Nguyen Cong, P., Vo Quoc, T., Tran, Q. Q., Wright, D. P., & Tran Anh, D. (2022). Multi-scale modelling for hydrodynamic and morphological changes of breakwater in coastal Mekong Delta in Vietnam. Journal of Coastal Conservation, 26(3), 18. doi:10.1007/s11852-022-00866-3.

Hayashi, T., Hattori, M., Kano, T., & Shirai, M. (1966). Hydraulic Research on the Closely Spaced Pile Breakwater. Coastal Engineering in Japan, 9(1), 107–117. doi:10.1080/05785634.1966.11924676.

Elsheikh, A. K., Mostafa, Y. E., & Mohamed, M. M. (2022). A comparative study between some different types of permeable breakwaters according to wave energy dissipation. Ain Shams Engineering Journal, 13(4), 101646. doi:10.1016/j.asej.2021.11.015.

Simanjuntak, E. M., Eliasta, L., Ginting, J. W., & Putra, I. A. I. D. R. (2019). Modelling Wave Dissipation on Pile Breakwater Using Xbeach. Jurnal Teknik Hidraulik, 10(1), 1–14. doi:10.32679/jth.v10i1.605.

Nurzaman, L., Juwono, P. T., Dermawan, V., & Wijatmiko, I. (2024). Wave Transmission Coefficient of Inclined Pile Breakwater Based on a Physical Model. Journal of Law and Sustainable Development, 12(2), e2911. doi:10.55908/sdgs.v12i2.2911.

Anas, M.A, (2014). Study of series stacked porous concrete block breakwaters. Teknik Sipil UNHAS, South Sulawesi, Indonesia.

Wurjanto, A., Ajiwibowo, H., & Zamzami, R. (2010). 2-D Physical Modeling to Measure the Level of Effectiveness of Perforated Skirt Breakwater in the Long Wave Category. Jurnal Teknik Sipil, 17(3), 211. doi:10.5614/jts.2010.17.3.7.

Sulaiman, D. M., & Larasari, A. A. (2017). Beach rehabilitation with wave breakers made of insulated round bamboo piles. Simposium II UNIID 2017, 2(1), 443-449. (In Indonesian).

Ji, C. Y., Zheng, R. S., Cui, J., & Wang, Z. L. (2019). Experimental evaluation of wave transmission and dynamics of double-row floating breakwaters. Journal of Waterway, Port, Coastal, and Ocean Engineering, 145(4), 04019013. doi:10.1061/(ASCE)WW.1943-5460.0000515.

Koftis, T. H. E. O. H. A. R. R. I. S., Prinos, P. A. N. A. Y. O. T. I. S., & Aftias, M. I. C. H. A. E. L. (2012). Experimental study of a multiple-row pile breakwater. 4th International Conference on the Application of Physical Modelling to Port and Coastal Protection. 17-20 September, 2012, Ghent, Belgium.

Hayashi T, Hattori M, & Shirai M. (1968). Closely Spaced Pile Breakwater as Protection Structure Against Beach Erosion. Coastal Engineering Proceedings, 1, 606–621. doi:10.9753/icce.v11.39.

Herbich, J. B., & Douglas, B. (1988). Wave Transmission Through a Double-Row Pile Breakwater. Coastal Engineering Proceedings, 21, 165. doi:10.9753/icce.v21.165.

Rao, S., Shirlal, K. G., & Rao, N. B. S. (2002). Wave transmission and reflection for two rows of perforated hollow piles. Indian Journal of Marine Sciences, 31(4), 283–289.

Sollitt, C. K., & Cross, R. H. (1972). Wave Transmission Through Permeable Breakwaters. Coastal Engineering Proceedings, 13, 99. doi:10.9753/icce.v13.99.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-06-09

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Lily Montarcih Limantara, Lukman Nurzaman, Pitojo Tri Juwono, Very Dermawan, Indradi Wijatmiko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message