A Review of Biomineralization as Solution for Roads and Infrastructures Concrete Sustainability

Roberto D. Rosario, Arvin De La Cruz, Mark P. De Guzman

Abstract


Concrete cracks in roads and infrastructure are ubiquitous due to environmental factors, fatigue, and material degradation. Applying bacteria with self-healing capabilities in concrete matrices is proposed as a solution. These bacteria, activated by water and oxygen ingress, produce calcium carbonate through biomineralization. They are improving structural integrity while reducing the adverse effects of chemical and water infiltration. The quantity of Bacillus bacteria to be added to the concrete mixture is an integral part of the standardization of the self-healing mechanism. 105 - 108 cells/mL of spores experienced improvement in mechanical properties and self-healing efficiency. Various Bacillus strains, such as Bacillus sphaericus, Bacillus subtilis, and Bacillus megaterium, are typically utilized in self-healing. The by-product of biomineralization, calcium carbonate, is an autonomous crack and pore sealer, which can be evaluated via SEM, XRD, and XDS. The study highlights the testing methodologies used to examine calcite deposition. Also, it reiterates the importance of urease activity evaluation before bacterial propagation to confirm the occurrence of the biomineralization process. Moreover, the article reiterates the bacteria's history, origin, and pathogenicity, bridging the gap concerning bacteria propagation safety and the need for industry-accepted standards and certification procedures. The transition from laboratory experiments to large-scale implementation is advocated to demonstrate bacterial concrete's sustainability and economic feasibility for broader industry adoption. Finally, bacteria concrete is a ground-breaking approach that unites construction and biology for long-term sustainable transportation materials and construction.

 

Doi: 10.28991/CEJ-2024-010-08-020

Full Text: PDF


Keywords


Transportation Materials; Self-Healing Concrete; Biomineralization; Infrastructure Sustainability.

References


Li, V. C., & Herbert, E. (2012). Robust self-healing concrete for sustainable infrastructure. Journal of Advanced Concrete Technology, 10(6), 207–218. doi:10.3151/jact.10.207.

Office of Energy Efficiency & Renewable Energy. (2024). Sustainable Transportation and Fuels. Office of Energy Efficiency & Renewable Energy, Washington, United States. Available online: https://www.energy.gov/eere/sustainable-transportation-and-fuels (accessed on July 2024).

Abdellatif, S., Elhadi, K. M., Raza, A., Arshad, M., & Elhag, A. B. (2023). A scientometric evaluation of self-healing cementitious composites for sustainable built environment applications. Journal of Building Engineering, 76. doi:10.1016/j.jobe.2023.107361.

Raza, A., El Ouni, M. H., Khan, Q. uz Z., Azab, M., Khan, D., Elhadi, K. M., & Alashker, Y. (2023). Sustainability assessment, structural performance and challenges of self-healing bio-mineralized concrete: A systematic review for built environment applications. Journal of Building Engineering, 66. doi:10.1016/j.jobe.2023.105839.

Luhar, S., Luhar, I., & Shaikh, F. U. A. (2022). A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties. Journal of Composites Science, 6(1). doi:10.3390/jcs6010023.

Khushnood, R. A., Qureshi, Z. A., Shaheen, N., & Ali, S. (2020). Bio-mineralized self-healing recycled aggregate concrete for sustainable infrastructure. Science of the Total Environment, 703. doi:10.1016/j.scitotenv.2019.135007.

Zhang, X., Fan, X., Li, M., Samia, A., & Yu, X. (Bill). (2021). Study on the behaviors of fungi-concrete surface interactions and theoretical assessment of its potentials for durable concrete with fungal-mediated self-healing. Journal of Cleaner Production, 292. doi:10.1016/j.jclepro.2021.125870.

Bagga, M., Hamley-Bennett, C., Alex, A., Freeman, B. L., Justo-Reinoso, I., Mihai, I. C., Gebhard, S., Paine, K., Jefferson, A. D., Masoero, E., & Ofiţeru, I. D. (2022). Advancements in bacteria based self-healing concrete and the promise of modelling. Construction and Building Materials, 358. doi:10.1016/j.conbuildmat.2022.129412.

Lee, Y. S., & Park, W. (2018). Current challenges and future directions for bacterial self-healing concrete. Applied microbiology and biotechnology, 102, 3059-3070. doi:10.1007/s00253-018-8830-y.

Meraz, M. M., Mim, N. J., Mehedi, M. T., Bhattacharya, B., Aftab, M. R., Billah, M. M., & Meraz, M. M. (2023). Self-healing concrete: Fabrication, advancement, and effectiveness for long-term integrity of concrete infrastructures. Alexandria Engineering Journal, 73, 665–694. doi:10.1016/j.aej.2023.05.008.

Sarkar, M., Maiti, M., Xu, S., & Mandal, S. (2023). Bio-concrete: Unveiling self-healing properties beyond crack-sealing. Journal of Building Engineering, 74. doi:10.1016/j.jobe.2023.106888.

Hong, G., Song, C., & Choi, S. (2020). Autogenous healing of early-age cracks in cementitious materials by superabsorbent polymers. Materials, 13(3). doi:10.3390/ma13030690.

Shashank, B. S., Kumar.K, P., & Nagaraja, P. S. (2022). Fracture behavior study of self-healing bacterial concrete. Materials Today: Proceedings, 60, 267–274. doi:10.1016/j.matpr.2021.12.520.

Rajawat, S.P.S., Singh Rajput, B., Sharma, M., & Jain, G. (2023). Exploring the potential of bacterial concrete: An analysis of self-healing capabilities and compressive strength. Materials Today: Proceedings, 1-10. doi:10.1016/j.matpr.2023.07.358.

Anbu, P., Kang, C. H., Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), 1–26. doi:10.1186/s40064-016-1869-2.

Sohail, M. G., Disi, Z. Al, Zouari, N., Nuaimi, N. Al, Kahraman, R., Gencturk, B., Rodrigues, D. F., & Yildirim, Y. (2022). Bio self-healing concrete using MICP by an indigenous Bacillus cereus strain isolated from Qatari soil. Construction and Building Materials, 328. doi:10.1016/j.conbuildmat.2022.126943.

Bottone, E. J. (2010). Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews, 23(2), 382–398. doi:10.1128/CMR.00073-09.

Amran, M., Onaizi, A. M., Fediuk, R., Vatin, N. I., Rashid, R. S. M., Abdelgader, H., & Ozbakkaloglu, T. (2022). Self-Healing Concrete as a Prospective Construction Material: A Review. Materials, 15(9), 3214. doi:10.3390/ma15093214.

Gifford, C. (2019). A sustainable reimagining of the construction industry. The New Economy, London, United Kingdom. Available online: https://www.theneweconomy.com/strategy/a-sustainable-reimagining-of-the-global-construction-industry (accessed on July 2024).

Nodehi, M., Ozbakkaloglu, T., & Gholampour, A. (2022). A systematic review of bacteria-based self-healing concrete: Biomineralization, mechanical, and durability properties. Journal of Building Engineering, 49, 104038. doi:10.1016/j.jobe.2022.104038.

Chen, H.-J., Peng, C.-F., Tang, C.-W., & Chen, Y.-T. (2019). Self-Healing Concrete by Biological Substrate. Materials, 12(24), 4099. doi:10.3390/ma12244099.

Roberto Rosario, D., & Viado, M. J. (2024). Encapsulating immobilized ureolytic bacteria yields self-healing concrete apropos sustainable transportation materials: a review. E3S Web of Conferences, 488, 3019. doi:10.1051/e3sconf/202448803019.

ACPA (2019). Concrete Pavement's Role in a Sustainable, Resilient Future Pavement’s. American Concrete Pavement Association, United States. Available online: https://www.acpa.org/wp-content/uploads/2019/02/White-Paper-Concrete-Pavement%E2%80%99s-Role-in-a-Sustainable-Resilient-Future-Ver.-1.1.pdf (accessed on July 2024).

Du, W., Qian, C., & Xie, Y. (2023). Demonstration application of microbial self-healing concrete in sidewall of underground engineering: A case study. Journal of Building Engineering, 63, 105512. doi:10.1016/j.jobe.2022.105512.

Utilities One (2024). The Future of Concrete Self-Healing and Carbon-Negative. Utilities One, New Jersey, United States. Available online: https://utilitiesone.com/expertise/construction (accessed on June 2024).

Utilities One (2024). Self-Healing Concrete Prolonging the Lifespan of Structures. Utilities One, New Jersey, United States. Available online: https://utilitiesone.com/self-healing-concrete-prolonging-the-lifespan-of-structures (accessed on July 2024).

Utilities One (2024). Concrete Contribution to Sustainable Transportation and Mobility. Utilities One, New Jersey, United States. Available online: https://utilitiesone.com/concrete-contribution-to-sustainable-transportation-and-mobility (accessed on June 2024).

Britannica. (2024). Bacillus. Available online: https://www.britannica.com/science/bacillus-bacteria#ref1300753 (accessed on June 2024).

Karava, M., Bracharz, F., & Kabisch, J. (2019). Quantification and isolation of Bacillus subtilis spores using cell sorting and automated gating. PLOS ONE, 14(7), 0219892. doi:10.1371/journal.pone.0219892.

Tan, I. S., & Ramamurthi, K. S. (2014). Spore formation in Bacillus subtilis. Environmental Microbiology Reports, 6(3), 212–225. doi:10.1111/1758-2229.12130.

Hashem, A., Tabassum, B., & Fathi Abd_Allah, E. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. doi:10.1016/j.sjbs.2019.05.004.

Mahapatra, S., Yadav, R., & Ramakrishna, W. (2022). Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. Journal of Applied Microbiology, 132(5), 3543–3562. doi:10.1111/jam.15480.

Wangui, N. R., Karanja Thiong’O, J., & Wachira, J. M. (2020). Effect of Bacillus cohnii on Some Physicomechanical and Microstructural Properties of Ordinary Portland Cement. Journal of Chemistry, 7816079. doi:10.1155/2020/7816079.

Sumathi, A., Murali, G., Gowdhaman, D., Amran, M., Fediuk, R., Vatin, N. I., Laxme, R. D., & Gowsika, T. S. (2020). Development of bacterium for crack healing and improving properties of concrete under wet–dry and full-wet curing. Sustainability (Switzerland), 12(24), 1–20. doi:10.3390/su122410346.

Pueyo, M. T., Bloch, C., Carmona-Ribeiro, A. M., & Di Mascio, P. (2009). Lipopeptides produced by a soil bacillus megaterium strain. Microbial Ecology, 57(2), 367–378. doi:10.1007/s00248-008-9464-x.

Scholle, M. D., White, C. A., Kunnimalaiyaan, M., & Vary, P. S. (2003). Sequencing and Characterization of pBM400 from Bacillus megaterium QM B1551. Applied and Environmental Microbiology, 69(11), 6888–6898. doi:10.1128/AEM.69.11.6888-6898.2003.

Xu, K., Yuan, Z., Rayner, S., & Hu, X. (2015). Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus. BMC Genomics, 16(1), 140. doi:10.1186/s12864-015-1359-x.

Bhaduri, S., Debnath, N., Mitra, S., Liu, Y., & Kumar, A. (2016). Microbiologically induced calcite precipitation mediated by sporosarcina pasteurii. Journal of Visualized Experiments, 2016(110). doi:10.3791/53253.

Jenson, I. (2014). Bacillus | Introduction. Encyclopedia of Food Microbiology, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-384730-0.00018-5.

Manvith Kumar Reddy, C., Ramesh, B., Macrin, D., & Reddy, K. (2020). Influence of bacteria Bacillus subtilis and its effects on flexural strength of concrete. Materials Today: Proceedings, 33, 4206–4211. doi:10.1016/j.matpr.2020.07.225.

Park, H. W., Bideshi, D. K., & Federici, B. A. (2010). Properties and applied use of the mosquitocidal bacterium, Bacillus sphaericus. Journal of Asia-Pacific Entomology, 13(3), 159–168. doi:10.1016/j.aspen.2010.03.002.

Khachatourians, G. G. (2019). Insecticides, Microbial. Reference Module in Life Sciences. Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-809633-8.13066-3.

Tang, S., Dong, Z., Ke, X., Luo, J., & Li, J. (2021). Advances in biomineralization-inspired materials for hard tissue repair. International Journal of Oral Science, 13(1). doi:10.1038/s41368-021-00147-z.

Javeed, Y., Goh, Y., Mo, K. H., Yap, S. P., & Leo, B. F. (2024). Microbial self-healing in concrete: A comprehensive exploration of bacterial viability, implementation techniques, and mechanical properties. Journal of Materials Research and Technology, 29, 2376–2395. doi:10.1016/j.jmrt.2024.01.261.

Šovljanski, O., Tomić, A., & Markov, S. (2022). Relationship between Bacterial Contribution and Self-Healing Effect of Cement-Based Materials. Microorganisms, 10(7), 1399. doi:10.3390/microorganisms10071399.

Guan, B., Tian, Q., Li, J., Zheng, H., & Xue, T. (2023). Selecting bacteria for in-depth self-healing of concrete at both room and low temperature. Construction and Building Materials, 394. doi:10.1016/j.conbuildmat.2023.132175.

Gojević, A., Netinger Grubeša, I., Marković, B., Juradin, S., & Crnoja, A. (2023). Autonomous Self-Healing Methods as a Potential Technique for the Improvement of Concrete’s Durability. Materials, 16(23), 7391. doi:10.3390/ma16237391.

Bagga, M., Hamley-Bennett, C., Alex, A., Freeman, B. L., Justo-Reinoso, I., Mihai, I. C., Gebhard, S., Paine, K., Jefferson, A. D., Masoero, E., & Ofiţeru, I. D. (2022). Advancements in bacteria based self-healing concrete and the promise of modelling. Construction and Building Materials, 358. doi:10.1016/j.conbuildmat.2022.129412.

Inspirit. (2023). Bacteria – Nutrition and Habitat Study Guide. Inspirit, California, United States. Available online: https://www.inspiritvr.com/bacteria-nutrition-and-habitat-study-guide/ (accessed on July 2024).

Global Garden. (2023). How Do Bacteria Get Nutrition?. Global Garden, Torrance, United States. Available online: https://www.globalgarden.co/knowledge/how-do-bacteria-get-nutrition/ (accessed on July 2024).

BYJU’S Online. (2024). Nutritional Classification of Bacteria. BYJU’S Online, Bengaluru, India. Available online: https://byjus.com/biology/nutritional-classification-of-bacteria/ (accessed on July 2024).

Bonnet, M., Lagier, J. C., Raoult, D., & Khelaifia, S. (2020). Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes and New Infections, 34. doi:10.1016/j.nmni.2019.100622.

Shen, L., Yu, W., Li, L., Zhang, T., Abshir, I. Y., Luo, P., & Liu, Z. (2021). Microorganism, carriers, and immobilization methods of the microbial self-healing cement-based composites: A review. Materials, 14(17), 116. doi:10.3390/ma14175116.

Wang, X., Xu, J., Wang, Z., & Yao, W. (2022). Use of recycled concrete aggregates as carriers for self-healing of concrete cracks by bacteria with high urease activity. Construction and Building Materials, 337, 127581. doi:10.1016/j.conbuildmat.2022.127581.

Li, Q., Zhang, B., Ge, Q., & Yang, X. (2018). Calcium carbonate precipitation induced by calcifying bacteria in culture experiments: Influence of the medium on morphology and mineralogy. International biodeterioration & biodegradation, 134, 83-92. doi:10.1016/j.ibiod.2018.08.006.

Castro-Alonso, M. J., Montañez-Hernandez, L. E., Sanchez-Muñoz, M. A., Macias Franco, M. R., Narayanasamy, R., & Balagurusamy, N. (2019). Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Frontiers in Materials, 6, 458036. doi:10.3389/fmats.2019.00126.

Bahrom, H., Goncharenko, A. A., Fatkhutdinova, L. I., Peltek, O. O., Muslimov, A. R., Koval, O. Y., Eliseev, I. E., Manchev, A., Gorin, D., Shishkin, I. I., Noskov, R. E., Timin, A. S., Ginzburg, P., & Zyuzin, M. V. (2019). Controllable Synthesis of Calcium Carbonate with Different Geometry: Comprehensive Analysis of Particle Formation, Cellular Uptake, and Biocompatibility. ACS Sustainable Chemistry and Engineering, 7(23), 19142–19156. doi:10.1021/acssuschemeng.9b05128.

McNamara, D. D., Lister, A., & Prior, D. J. (2016). Calcite sealing in a fractured geothermal reservoir: Insights from combined EBSD and chemistry mapping. Journal of Volcanology and Geothermal Research, 323, 38–52. doi:10.1016/j.jvolgeores.2016.04.042.

Surface tests to determine transport properties of concrete – II: analytical models to calculate permeability. (2021). Transport Properties of Concrete, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-820249-4.00004-3.

fxSolver (2024). Sorptivity - calculator – fxSolver. Available online: https://www.fxsolver.com/ (accessed on July 2024).

Khan, M. A. Z. (2023). What is water Absorption Test of concrete? explain in details with test procedure and examples. The Engineer’s Blog, 22. Available online: https://engineersblog.net/what-is-water-absorption-test-of-concrete/ (accessed on May 2024).

ASTM C1585-13. (2013). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM International, Pennsylvania, United States. doi:10.1520/C1585-13

SciMed. (2024). A Brief Introduction to SEM (Scanning Electron Microscopy) | SciMed, Stockport, United Kingdom. Available online: https://www.scimed.co.uk/education/sem-applications/#:~:text=Scanning electron microscopy (SEM) is, biology to electronics and forensics (accessed on May 2024).

Swapp, S. (2007). Scanning Electron Microscopy (SEM). Geochemical Instrumentation and Analysis, Integrating Research and Education. Available online: https://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html (accessed on May 2024).

Dutrow, B., & Clark, C. M. (2007). X-ray Powder Diffraction (XRD). Geochemical Instrumentation and Analysis, Integrating Research and Education. Available online: https://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html (accessed on May 2024).

Malvern Panalytical (2024). X-ray Diffraction (XRD) – Overview. Malvern Panalytical, Massachusetts, United States. Available online: https://www.malvernpanalytical.com/en/products/technology/xray-analysis/x-ray-diffraction (accessed on June 2024).

Bandlamudi, R. K., Kar, A., & Ray Dutta, J. (2023). A review of durability improvement in concrete due to bacterial inclusions. Frontiers in Built Environment, 9, 1095949. doi:10.3389/fbuil.2023.1095949.

De Belie, N., & Wang, J. (2016). Bacteria-based repair and self-healing of concrete. Journal of Sustainable Cement-Based Materials, 5(1-2), 35-56. doi:10.1080/21650373.2015.1077754.

Althoey, F., Zaid, O., Arbili, M. M., Martínez-García, R., Alhamami, A., Shah, H. A., & Yosri, A. M. (2023). Physical, strength, durability and microstructural analysis of self-healing concrete: A systematic review. Case Studies in Construction Materials, 18. doi:10.1016/j.cscm.2022.e01730.

Cappellesso, V., di Summa, D., Pourhaji, P., Prabhu Kannikachalam, N., Dabral, K., Ferrara, L., Cruz Alonso, M., Camacho, E., Gruyaert, E., & De Belie, N. (2023). A review of the efficiency of self-healing concrete technologies for durable and sustainable concrete under realistic conditions. International Materials Reviews, 68(5), 556–603. doi:10.1080/09506608.2022.2145747.

Ivaškė, A., Gribniak, V., Jakubovskis, R., & Urbonavičius, J. (2023). Bacterial Viability in Self-Healing Concrete: A Case Study of Non-Ureolytic Bacillus Species. Microorganisms, 11(10), 2402. doi:10.3390/microorganisms11102402.

Osta, M. O., & Mukhtar, F. (2024). Effect of bacteria on uncracked concrete mechanical properties correlated with damage self-healing efficiency – A critical review. Developments in the Built Environment, 17, 100301. doi:10.1016/j.dibe.2023.100301.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-08-020

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Roberto Rosario

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message