Impact of Rear Slope Variation on Rubble Mound Breakwater Stability Under Seismic Loading
Downloads
Doi: 10.28991/CEJ-SP2024-010-08
Full Text: PDF
[2] Cihan, K., & Yuksel, Y. (2013). Deformation of breakwater armoured artificial units under cyclic loading. Applied Ocean Research, 42, 79–86. doi:10.1016/j.apor.2013.05.002.
[3] Campos, í., Molina-Sanchez, R., & Castillo, C. (2020). Damage in rubble mound breakwaters. Part II: Review of the definition, parameterization, and measurement of damage. Journal of Marine Science and Engineering, 8(5), 306. doi:10.3390/JMSE8050306.
[4] Mertens, M. (2007). Stability of rock on slopes under wave attack: Comparison and analysis of datasets Van der Meer (1988) and Van Gent (2003). Master Thesis, Delft university of Technology, Delft, Netherlands.
[5] Reedijk, B., Muttray, M., van den Berge, A., & de Rover, R. (2009). Effect of Core Permeability on Armour Layer Stability. Coastal Engineering 2008, 3358-367. doi:10.1142/9789814277426_0278.
[6] Melby, J. A. (2005). Damage development on stone-armored breakwaters and revetments. Coastal and Hydraulics Engineering Technical Note, U.S. Army Corps of Engineers, Washington, United States.
[7] Garcia, R., & Kobayashi, N. (2014). Damage Variations on Low-Crested Breakwaters. Coastal Engineering Proceedings, 1(34), 14. doi:10.9753/icce.v34.structures.14.
[8] Campos Duque, A. (2016). A methodology for the analysis of damage progression in rubble mound breakwaters. Ph.D. Thesis, Universidad de Castilla-La Mancha, Ciudad Real, Spain.
[9] van Gent, M. R. A., de Almeida, E., & Hofland, B. (2019). Statistical analysis of the stability of rock slopes. Journal of Marine Science and Engineering, 7(3), 60. doi:10.3390/jmse7030060.
[10] de Almeida, E., van Gent, M. R. A., & Hofland, B. (2019). Damage characterization of rock slopes. Journal of Marine Science and Engineering, 7(1), 10. doi:10.3390/jmse7010010.
[11] Stassen, Y., & Lesprit, I. (2010). Design of a reprofiling berm dike for the Roscoff-Bloscon port extension project. XIèmes Journées, Les Sables d'Olonne, 761–770. doi:10.5150/jngcgc.2010.085-s. (In French).
[12] Celli, D., Pasquali, D., De Girolamo, P., & Di Risio, M. (2018). Effects of submerged berms on the stability of conventional rubble mound breakwaters. Coastal Engineering, 136, 16–25. doi:10.1016/j.coastaleng.2018.01.011.
[13] Sasikumar, A., Bihs, H., Kamath, A., Musch, O., & Arntsen, í˜. A. (2017). Numerical Investigation of Wave Kinematics Inside Berm Breakwaters with Varying Berm Geometry Using REEF3D. Volume 7A: Ocean Engineering. doi:10.1115/omae2017-62543.
[14] Tí¸rum, A., & Sigurdarson, S. (2002). PIANC Working Group No. 40: Guidelines for the Design and Construction of Berm Breakwaters. Breakwaters, Coastal Structures and Coastlines, 373–384. doi:10.1680/bcsac.30428.0031.
[15] Van Gent, M. R. A., & van der Werf, I. M. (2014). Rock toe stability of rubble mound breakwaters. Coastal Engineering, 83, 166–176. doi:10.1016/j.coastaleng.2013.10.012.
[16] Muñoz-Perez, J. J., & Medina, R. (2010). Comparison of long-, medium- and short-term variations of beach profiles with and without submerged geological control. Coastal Engineering, 57(3), 241–251. doi:10.1016/j.coastaleng.2009.09.011.
[17] Clavero, M., Díaz-Carrasco, P., & Losada, M. A. (2020). Bulk wave dissipation in the armor layer of slope rock and cube armored breakwaters. Journal of Marine Science and Engineering, 8(3), 152. doi:10.3390/jmse8030152.
[18] PIANIC. (2001). Seismic Design Guidelines for Port Structures. Swets & Zeitlinger B.V., Lisse, Netherlands.
[19] Yüksel, Y., Çetin, K. Ö., Özgüven, O., Isik, N. S., Cevik, E., & Sümer, B. M. (2004). Seismic response of a rubble mound breakwater in Turkey. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 157(4), 151–161. doi:10.1680/maen.2004.157.4.151.
[20] Sumer, B. M., Ansal, A., Cetin, K. O., Damgaard, J., Gunbak, A. R., Hansen, N.-E. O., Sawicki, A., Synolakis, C. E., Yalciner, A. C., Yuksel, Y., & Zen, K. (2007). Earthquake-Induced Liquefaction around Marine Structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133(1), 55–82. doi:10.1061/(asce)0733-950x(2007)133:1(55).
[21] Yuksel, Y., Alpar, B., Yalciner, A. C., Cevik, E., Ozguven, O., & Celikoglu, Y. (2003). Effects of the eastern Marmara Earthquake on marine structures and coastal areas. Maritime Engineering, 156(2), 147–163. doi:10.1680/maen.156.2.147.37964.
[22] Cihan, K., & Yuksel, Y. (2011). Deformation of rubble-mound breakwaters under cyclic loads. Coastal Engineering, 58(6), 528–539. doi:10.1016/j.coastaleng.2011.02.002.
[23] van Gent, M. R. A. (2013). Rock stability of rubble mound breakwaters with a berm. Coastal Engineering, 78, 35–45. doi:10.1016/j.coastaleng.2013.03.003.
[24] Onyelowe, K. C., Nimbalkar, A., Reddy, N. G., Baldovino, J. de J. A., Hanandeh, S., & Ebid, A. M. (2023). Seepage Analysis and Optimization of Reservoir Earthen Embankment with Double Textured HDPE Geo-Membrane Barrier. Civil Engineering Journal, 9(11), 2736–2751. doi:10.28991/cej-2023-09-11-07.
[25] Sajan, M. K., Chaudhary, B., Akarsh, P. K., & Kumar, S. (2024). Geosynthetic reinforced rubble mound breakwater for mitigation of tsunami-induced damage. Geotextiles and Geomembranes, 52(1), 72–94. doi:10.1016/j.geotexmem.2023.09.003.
[26] Sajan, M. K., Chaudhary, B., Kotrabasappa, A. P., Kumar, S., & Sah, B. (2024). Novel Techniques for Reinforcing Rubble-Mound Breakwater against Tsunamis. Journal of Geotechnical and Geoenvironmental Engineering, 150(3), 04024002. doi:10.1061/jggefk.gteng-11773.
[27] Akarsh, P. K., Chaudhary, B., Sajan, M. K., & Kumar, S. (2024). Seismic Responses of Rubble Mound Breakwater: Numerical Analyses. Geo-Sustainnovation for Resilient Society. CREST 2023 2023, Lecture Notes in Civil Engineering, 446, Springer, Singapore. doi:10.1007/978-981-99-9219-5_22.
[28] Akarsh, P. K., Chaudhary, B., Sajan, M. K., Kumar, S., & Sah, B. (2024). Seismic stability evaluation of rubble mound breakwater: Shake table tests and numerical analyses. Soil Dynamics and Earthquake Engineering, 178, 108466. doi:10.1016/j.soildyn.2024.108466.
[29] Van Der Meer, J. W. (1995). Conceptual Design of Rubble Mound Breakwaters. Advances in Coastal and Ocean Engineering, 221–315, World Scientific, Singapore. doi:10.1142/9789812797582_0005.
[30] Brinkgreve, R. B. J., Broere, W., Waterman, D., Al-Khoury, R., Bakker, K., Bonnier, P., ... & Den Haag, D. (2004). 2D–Version 8. Plaxis manuals, Delft university of Technology, Delft, Netherlands.
[31] CIRIA C683. (2007). The Rock Manual, The use of rock in hydraulic engineering (2nd Ed.). CIRIA, London, United Kingdom.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.