Assessing the Impact of Adverse Weather on Performance and Safety of Connected and Autonomous Vehicles
Vol. 10 No. 9 (2024): September
Research Articles
Downloads
Doi: 10.28991/CEJ-2024-010-09-019
Full Text: PDF
Abuzwidah, M., Elawady, A., Wang, L., & Zeiada, W. (2024). Assessing the Impact of Adverse Weather on Performance and Safety of Connected and Autonomous Vehicles. Civil Engineering Journal, 10(9), 3070–3089. https://doi.org/10.28991/CEJ-2024-010-09-019
[1] Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77, 167–181. doi:10.1016/j.tra.2015.04.003.
[2] Bajpai, J. N. (2016). Emerging vehicle technologies & the search for urban mobility solutions. Urban, Planning and Transport Research, 4(1), 83–100. doi:10.1080/21650020.2016.1185964.
[3] Abuzwidah, M., Elawady, A., Ashour, A. G., Yilmaz, A. G., Shanableh, A., & Zeiada, W. (2024). Flood Risk Assessment for Sustainable Transportation Planning and Development under Climate Change: A GIS-Based Comparative Analysis of CMIP6 Scenarios. Sustainability (Switzerland), 16(14), 5939. doi:10.3390/su16145939.
[4] Bohm, F., & Häger, K. (2015). Introduction of Autonomous Vehicles in the Swedish Traffic System Effects and Changes Due to the New Self-Driving Car Technology, Uppsala University, Uppsala, Sweden.
[5] Mahmassani, H. S. (2016). 50th Anniversary invited article autonomous vehicles and connected vehicle systems: Flow and operations considerations. Transportation Science, 50(4), 1140–1162. doi:10.1287/trsc.2016.0712.
[6] Singh, S. (2015). Critical reasons for crashes investigated in the National Motor Vehicle Crash Causation Survey. National Highway Traffic Safety Administration. Report No. DOT HS 812 115, 01557283.
[7] Elbaz, Y., Naeem, M., Abuzwidah, M., & Barakat, S. (2020). Effect of drowsiness on driver performance and traffic safety. Advances in Science and Engineering Technology International Conferences, ASET 2020, Dubai, United Arab Emirates. doi:10.1109/ASET48392.2020.9118242.
[8] NHTSA. (2022). Automated Vehicles for Safety. National Highway Traffic Safety Administration, Volume 21, Washington, D.C., United States.
[9] Tanner, J. C. (1952). Effect of weather on traffic flow. Nature, 169(4290), 107. doi:10.1038/169107a0.
[10] Hranac, R., Sterzin, E., Krechmer, D., Rakha, H. A., & Farzaneh, M. (2006). Empirical studies on traffic flow in inclement weather. Appendix B"¯: Model Formulation. United States. Federal Highway Administration. Road Weather Management Program, 3–5.
[11] Kilpeläinen, M., & Summala, H. (2007). Effects of weather and weather forecasts on driver behaviour. Transportation Research Part F: Traffic Psychology and Behaviour, 10(4), 288-299. doi:10.1016/j.trf.2006.11.002.
[12] Brilon, W., & Ponzlet, M. (1997). Variability of speed-flow relationships on German autobahns. Transportation Research Record, 1555, 91–98. doi:10.1177/0361198196155500112.
[13] Alfelor, R., Mahmassani, H. S., & Dong, J. (2009). Incorporating weather impacts in traffic estimation and prediction systems. Institute of Transportation Engineers Annual Meeting and Exhibit 2009, 1, 443–457.
[14] Mahmoud, N., Abdel-Aty, M., Cai, Q., & Abuzwidah, M. (2022). Analyzing the Difference Between Operating Speed and Target Speed Using Mixed-Effect Ordered Logit Model. Transportation Research Record, 2676(9), 596–607. doi:10.1177/03611981221088197.
[15] Smith, B. L., Byrne, K. G., Copperman, R. B., Hennessy, S. M., & Goodall, N. J. (2004, January). An investigation into the impact of rainfall on freeway traffic flow. 83rd annual meeting of the Transportation Research Board, Washington, D.C., United States.
[16] Agarwal, M., Maze, T. H., & Souleyrette, R. R. (2005). Impacts of Weather on Urban Freeway Traffic Flow Characteristics and Facility Capacity. Proceedings of the 2005 Mid-Continent Transportation Research Symposium, August 2005, 1-14.
[17] Abuzwidah, M., & Abdel-Aty, M. (2024). Assessing the impact of express lanes on traffic safety of freeways. Accident Analysis and Prevention, 207. doi:10.1016/j.aap.2024.107718.
[18] Kaisari, N. K., Abuzwidah, M., Elawady, A., & Zeiada, W. (2022). Adverse weather impact on driver performance in the UAE. E3S Web of Conferences, 347, 1020. doi:10.1051/e3sconf/202234701020.
[19] Saha, A. K., & Agrawal, S. (2020). Mapping and assessment of flood risk in Prayagraj district, India: a GIS and remote sensing study. Nanotechnology for Environmental Engineering, 5(2), 1-18. doi:10.1007/s41204-020-00073-1.
[20] Abdel-Aty, M. A., Oloufa, A., Eluru, N., Yu, Y., & Park, J. (2016). Phase II: Real Time Monitoring and Prediction of Reduced Visibility Events on Florida's Highways. Report, BDV24, 901–962,
[21] Peng, Y., Abdel-Aty, M., Shi, Q., & Yu, R. (2017). Assessing the impact of reduced visibility on traffic crash risk using microscopic data and surrogate safety measures. Transportation Research Part C: Emerging Technologies, 74, 295–305. doi:10.1016/j.trc.2016.11.022.
[22] Ahmed, M., Abdel-Aty, M., Qi, S., & Abuzwidah, M. (2014). Synthesis of State-of-the-Art in Visibility Detection Systems' Applications and Research. Journal of Transportation Safety and Security, 6(3), 183–206. doi:10.1080/19439962.2013.824055.
[23] Rezaei, A., & Caulfield, B. (2021). Safety of autonomous vehicles: what are the insights from experienced industry professionals?. Transportation research part F: traffic psychology and behaviour, 81, 472-489. doi:10.1016/j.trf.2021.07.005.
[24] Elawady, A., Abuzwidah, M., & Zeiada, W. (2022). The Benefits of Using Connected Vehicles System on Traffic Delay and Safety at Urban Signalized Intersections. 2022 Advances in Science and Engineering Technology International Conferences, ASET 2022, 1–6. doi:10.1109/ASET53988.2022.9734911.
[25] Kim, B., Heaslip, K. P., Aad, M. A., Fuentes, A., & Goodall, N. (2021). Assessing the impact of automated and connected automated vehicles on Virginia freeways. Transportation Research Record, 2675(9), 870–884. doi:10.1177/03611981211004979.
[26] Fan, R., Yu, H., Liu, P., & Wang, W. (2013). Using VISSIM simulation model and Surrogate Safety Assessment Model for estimating field measured traffic conflicts at freeway merge areas. IET Intelligent Transport Systems, 7(1), 68–77. doi:10.1049/iet-its.2011.0232.
[27] Huang, F., Liu, P., Yu, H., & Wang, W. (2013). Identifying if VISSIM simulation model and SSAM provide reasonable estimates for field measured traffic conflicts at signalized intersections. Accident Analysis and Prevention, 50, 1014–1024. doi:10.1016/j.aap.2012.08.018.
[28] Shahdah, U., Saccomanno, F., & Persaud, B. (2015). Application of traffic microsimulation for evaluating safety performance of urban signalized intersections. Transportation Research Part C: Emerging Technologies, 60, 96–104. doi:10.1016/j.trc.2015.06.010.
[29] Ye, L., & Yamamoto, T. (2019). Evaluating the impact of connected and autonomous vehicles on traffic safety. Physica A: Statistical Mechanics and Its Applications, 526, 12–22. doi:10.1016/j.physa.2019.04.245.
[30] Szarata, A., Ostaszewski, P., & Mirzahossein, H. (2023). Simulating the impact of autonomous vehicles (AVs) on intersections traffic conditions using TRANSYT and PTV VISSIM. Innovative Infrastructure Solutions, 8(6), 164. doi:10.1007/s41062-023-01132-7.
[31] Fujiu, M., Morisaki, Y., & Takayama, J. (2024). Impact of Autonomous Vehicles on Traffic Flow in Rural and Urban Areas Using a Traffic Flow Simulator. Sustainability (Switzerland), 16(2), 658. doi:10.3390/su16020658.
[32] Ahmed, H. U., Ahmad, S., Yang, X., Lu, P., & Huang, Y. (2024). Safety and Mobility Evaluation of Cumulative-Anticipative Car-Following Model for Connected Autonomous Vehicles. Smart Cities, 7(1), 518–540. doi:10.3390/smartcities7010021.
[33] Lu, Z., Ding, N., Gao, J., Fu, C., & Zhang, H. (2023). Safety Benefits Evaluation of Mixed Traffic Flow with Connected and Automated Vehicles under Snowy Conditions. 7th IEEE International Conference on Transportation Information and Safety, ICTIS 2023, 380–385. doi:10.1109/ICTIS60134.2023.10243727.
[34] Hou, G. (2023). Evaluating Efficiency and Safety of Mixed Traffic with Connected and Autonomous Vehicles in Adverse Weather. Sustainability (Switzerland), 15(4), 3138. doi:10.3390/su15043138.
[35] Wiedemann, R., & Reiter, U. (1992). Microscopic traffic simulation: the simulation system Mission, background and actual state. Project ICARUS (V1052) Final Report. Brussels, CEC, 2, 1–53.
[36] Adebisi, A., Liu, Y., Schroeder, B., Ma, J., Cesme, B., Jia, A., & Morgan, A. (2020). Developing Highway Capacity Manual Capacity Adjustment Factors for Connected and Automated Traffic on Freeway Segments. Transportation Research Record, 2674(10), 401–415. doi:10.1177/0361198120934797.
[37] Sukennik, P. (2020). D2.11 Microsimulation Guide for Automated Vehicles. COEXIST, Version: 4.0, 723201.
[38] Fakhrmoosavi, F., Saedi, R., Zockaie, A., & Talebpour, A. (2020). Impacts of connected and autonomous vehicles on traffic flow with heterogeneous drivers spatially distributed over large-scale networks. Transportation research record, 2674(10), 817-830. doi:10.1177/0361198120940997.
[39] Asadi, F. E., Anwar, A. K., & Miles, J. C. (2019). Investigating the potential transportation impacts of connected and autonomous vehicles. 2019 8th IEEE International Conference on Connected Vehicles and Expo, ICCVE 2019 - Proceedings, 1–6. doi:10.1109/ICCVE45908.2019.8964994.
[40] He, S., He, S., Guo, X., Ding, F., Ding, F., Qi, Y., & Chen, T. (2020). Freeway Traffic Speed Estimation of Mixed Traffic Using Data from Connected and Autonomous Vehicles with a Low Penetration Rate. Journal of Advanced Transportation, 1361583. doi:10.1155/2020/1361583.
[41] Dowling, R., Skabardonis, A., & Alexiadis, V. (2004). Traffic Analysis Toolbox Volume III"¯: Guidelines for Applying Traffic Microsimulation Modeling Software. Report No. FHWA-HRT-04-040, U.S. DOT, Federal Highway Administration, Washington, D.C., United States.
[42] Park, B., & Schneeberger, J. D. (2003). Microscopic Simulation Model Calibration and Validation: Case Study of VISSIM Simulation Model for a Coordinated Actuated Signal System. Transportation Research Record, 1856, 185–192. doi:10.3141/1856-20.
[43] Gettman, D., Pu, L., Sayed, T., & Shelby, S. (2008). Surrogate Safety Assessment Model and Validation. Publication No. FHWA-HRT-08-051. Turner-Fairbank Highway Research Center, Virginia, United States.
[2] Bajpai, J. N. (2016). Emerging vehicle technologies & the search for urban mobility solutions. Urban, Planning and Transport Research, 4(1), 83–100. doi:10.1080/21650020.2016.1185964.
[3] Abuzwidah, M., Elawady, A., Ashour, A. G., Yilmaz, A. G., Shanableh, A., & Zeiada, W. (2024). Flood Risk Assessment for Sustainable Transportation Planning and Development under Climate Change: A GIS-Based Comparative Analysis of CMIP6 Scenarios. Sustainability (Switzerland), 16(14), 5939. doi:10.3390/su16145939.
[4] Bohm, F., & Häger, K. (2015). Introduction of Autonomous Vehicles in the Swedish Traffic System Effects and Changes Due to the New Self-Driving Car Technology, Uppsala University, Uppsala, Sweden.
[5] Mahmassani, H. S. (2016). 50th Anniversary invited article autonomous vehicles and connected vehicle systems: Flow and operations considerations. Transportation Science, 50(4), 1140–1162. doi:10.1287/trsc.2016.0712.
[6] Singh, S. (2015). Critical reasons for crashes investigated in the National Motor Vehicle Crash Causation Survey. National Highway Traffic Safety Administration. Report No. DOT HS 812 115, 01557283.
[7] Elbaz, Y., Naeem, M., Abuzwidah, M., & Barakat, S. (2020). Effect of drowsiness on driver performance and traffic safety. Advances in Science and Engineering Technology International Conferences, ASET 2020, Dubai, United Arab Emirates. doi:10.1109/ASET48392.2020.9118242.
[8] NHTSA. (2022). Automated Vehicles for Safety. National Highway Traffic Safety Administration, Volume 21, Washington, D.C., United States.
[9] Tanner, J. C. (1952). Effect of weather on traffic flow. Nature, 169(4290), 107. doi:10.1038/169107a0.
[10] Hranac, R., Sterzin, E., Krechmer, D., Rakha, H. A., & Farzaneh, M. (2006). Empirical studies on traffic flow in inclement weather. Appendix B"¯: Model Formulation. United States. Federal Highway Administration. Road Weather Management Program, 3–5.
[11] Kilpeläinen, M., & Summala, H. (2007). Effects of weather and weather forecasts on driver behaviour. Transportation Research Part F: Traffic Psychology and Behaviour, 10(4), 288-299. doi:10.1016/j.trf.2006.11.002.
[12] Brilon, W., & Ponzlet, M. (1997). Variability of speed-flow relationships on German autobahns. Transportation Research Record, 1555, 91–98. doi:10.1177/0361198196155500112.
[13] Alfelor, R., Mahmassani, H. S., & Dong, J. (2009). Incorporating weather impacts in traffic estimation and prediction systems. Institute of Transportation Engineers Annual Meeting and Exhibit 2009, 1, 443–457.
[14] Mahmoud, N., Abdel-Aty, M., Cai, Q., & Abuzwidah, M. (2022). Analyzing the Difference Between Operating Speed and Target Speed Using Mixed-Effect Ordered Logit Model. Transportation Research Record, 2676(9), 596–607. doi:10.1177/03611981221088197.
[15] Smith, B. L., Byrne, K. G., Copperman, R. B., Hennessy, S. M., & Goodall, N. J. (2004, January). An investigation into the impact of rainfall on freeway traffic flow. 83rd annual meeting of the Transportation Research Board, Washington, D.C., United States.
[16] Agarwal, M., Maze, T. H., & Souleyrette, R. R. (2005). Impacts of Weather on Urban Freeway Traffic Flow Characteristics and Facility Capacity. Proceedings of the 2005 Mid-Continent Transportation Research Symposium, August 2005, 1-14.
[17] Abuzwidah, M., & Abdel-Aty, M. (2024). Assessing the impact of express lanes on traffic safety of freeways. Accident Analysis and Prevention, 207. doi:10.1016/j.aap.2024.107718.
[18] Kaisari, N. K., Abuzwidah, M., Elawady, A., & Zeiada, W. (2022). Adverse weather impact on driver performance in the UAE. E3S Web of Conferences, 347, 1020. doi:10.1051/e3sconf/202234701020.
[19] Saha, A. K., & Agrawal, S. (2020). Mapping and assessment of flood risk in Prayagraj district, India: a GIS and remote sensing study. Nanotechnology for Environmental Engineering, 5(2), 1-18. doi:10.1007/s41204-020-00073-1.
[20] Abdel-Aty, M. A., Oloufa, A., Eluru, N., Yu, Y., & Park, J. (2016). Phase II: Real Time Monitoring and Prediction of Reduced Visibility Events on Florida's Highways. Report, BDV24, 901–962,
[21] Peng, Y., Abdel-Aty, M., Shi, Q., & Yu, R. (2017). Assessing the impact of reduced visibility on traffic crash risk using microscopic data and surrogate safety measures. Transportation Research Part C: Emerging Technologies, 74, 295–305. doi:10.1016/j.trc.2016.11.022.
[22] Ahmed, M., Abdel-Aty, M., Qi, S., & Abuzwidah, M. (2014). Synthesis of State-of-the-Art in Visibility Detection Systems' Applications and Research. Journal of Transportation Safety and Security, 6(3), 183–206. doi:10.1080/19439962.2013.824055.
[23] Rezaei, A., & Caulfield, B. (2021). Safety of autonomous vehicles: what are the insights from experienced industry professionals?. Transportation research part F: traffic psychology and behaviour, 81, 472-489. doi:10.1016/j.trf.2021.07.005.
[24] Elawady, A., Abuzwidah, M., & Zeiada, W. (2022). The Benefits of Using Connected Vehicles System on Traffic Delay and Safety at Urban Signalized Intersections. 2022 Advances in Science and Engineering Technology International Conferences, ASET 2022, 1–6. doi:10.1109/ASET53988.2022.9734911.
[25] Kim, B., Heaslip, K. P., Aad, M. A., Fuentes, A., & Goodall, N. (2021). Assessing the impact of automated and connected automated vehicles on Virginia freeways. Transportation Research Record, 2675(9), 870–884. doi:10.1177/03611981211004979.
[26] Fan, R., Yu, H., Liu, P., & Wang, W. (2013). Using VISSIM simulation model and Surrogate Safety Assessment Model for estimating field measured traffic conflicts at freeway merge areas. IET Intelligent Transport Systems, 7(1), 68–77. doi:10.1049/iet-its.2011.0232.
[27] Huang, F., Liu, P., Yu, H., & Wang, W. (2013). Identifying if VISSIM simulation model and SSAM provide reasonable estimates for field measured traffic conflicts at signalized intersections. Accident Analysis and Prevention, 50, 1014–1024. doi:10.1016/j.aap.2012.08.018.
[28] Shahdah, U., Saccomanno, F., & Persaud, B. (2015). Application of traffic microsimulation for evaluating safety performance of urban signalized intersections. Transportation Research Part C: Emerging Technologies, 60, 96–104. doi:10.1016/j.trc.2015.06.010.
[29] Ye, L., & Yamamoto, T. (2019). Evaluating the impact of connected and autonomous vehicles on traffic safety. Physica A: Statistical Mechanics and Its Applications, 526, 12–22. doi:10.1016/j.physa.2019.04.245.
[30] Szarata, A., Ostaszewski, P., & Mirzahossein, H. (2023). Simulating the impact of autonomous vehicles (AVs) on intersections traffic conditions using TRANSYT and PTV VISSIM. Innovative Infrastructure Solutions, 8(6), 164. doi:10.1007/s41062-023-01132-7.
[31] Fujiu, M., Morisaki, Y., & Takayama, J. (2024). Impact of Autonomous Vehicles on Traffic Flow in Rural and Urban Areas Using a Traffic Flow Simulator. Sustainability (Switzerland), 16(2), 658. doi:10.3390/su16020658.
[32] Ahmed, H. U., Ahmad, S., Yang, X., Lu, P., & Huang, Y. (2024). Safety and Mobility Evaluation of Cumulative-Anticipative Car-Following Model for Connected Autonomous Vehicles. Smart Cities, 7(1), 518–540. doi:10.3390/smartcities7010021.
[33] Lu, Z., Ding, N., Gao, J., Fu, C., & Zhang, H. (2023). Safety Benefits Evaluation of Mixed Traffic Flow with Connected and Automated Vehicles under Snowy Conditions. 7th IEEE International Conference on Transportation Information and Safety, ICTIS 2023, 380–385. doi:10.1109/ICTIS60134.2023.10243727.
[34] Hou, G. (2023). Evaluating Efficiency and Safety of Mixed Traffic with Connected and Autonomous Vehicles in Adverse Weather. Sustainability (Switzerland), 15(4), 3138. doi:10.3390/su15043138.
[35] Wiedemann, R., & Reiter, U. (1992). Microscopic traffic simulation: the simulation system Mission, background and actual state. Project ICARUS (V1052) Final Report. Brussels, CEC, 2, 1–53.
[36] Adebisi, A., Liu, Y., Schroeder, B., Ma, J., Cesme, B., Jia, A., & Morgan, A. (2020). Developing Highway Capacity Manual Capacity Adjustment Factors for Connected and Automated Traffic on Freeway Segments. Transportation Research Record, 2674(10), 401–415. doi:10.1177/0361198120934797.
[37] Sukennik, P. (2020). D2.11 Microsimulation Guide for Automated Vehicles. COEXIST, Version: 4.0, 723201.
[38] Fakhrmoosavi, F., Saedi, R., Zockaie, A., & Talebpour, A. (2020). Impacts of connected and autonomous vehicles on traffic flow with heterogeneous drivers spatially distributed over large-scale networks. Transportation research record, 2674(10), 817-830. doi:10.1177/0361198120940997.
[39] Asadi, F. E., Anwar, A. K., & Miles, J. C. (2019). Investigating the potential transportation impacts of connected and autonomous vehicles. 2019 8th IEEE International Conference on Connected Vehicles and Expo, ICCVE 2019 - Proceedings, 1–6. doi:10.1109/ICCVE45908.2019.8964994.
[40] He, S., He, S., Guo, X., Ding, F., Ding, F., Qi, Y., & Chen, T. (2020). Freeway Traffic Speed Estimation of Mixed Traffic Using Data from Connected and Autonomous Vehicles with a Low Penetration Rate. Journal of Advanced Transportation, 1361583. doi:10.1155/2020/1361583.
[41] Dowling, R., Skabardonis, A., & Alexiadis, V. (2004). Traffic Analysis Toolbox Volume III"¯: Guidelines for Applying Traffic Microsimulation Modeling Software. Report No. FHWA-HRT-04-040, U.S. DOT, Federal Highway Administration, Washington, D.C., United States.
[42] Park, B., & Schneeberger, J. D. (2003). Microscopic Simulation Model Calibration and Validation: Case Study of VISSIM Simulation Model for a Coordinated Actuated Signal System. Transportation Research Record, 1856, 185–192. doi:10.3141/1856-20.
[43] Gettman, D., Pu, L., Sayed, T., & Shelby, S. (2008). Surrogate Safety Assessment Model and Validation. Publication No. FHWA-HRT-08-051. Turner-Fairbank Highway Research Center, Virginia, United States.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
