The Buildings' Reliability Calculating Method Using a Simple Seismic Impact Model
Downloads
Doi: 10.28991/CEJ-2024-010-08-019
Full Text: PDF
[2] Zhunusov, T. Z. Pak, E.F. & Lapin V.A. (1990). Earthquake resistance of frame buildings. Gylym, Almaty, Kazakhstan. (In Russian).
[3] Bolotin, V.V. (1965). Statistical methods in building mechanics Publishing house of literature on construction, Moscow, Russia. (In Russian).
[4] Bolotin, V.V. (1981). Statistical modeling based on earthquake resistance. Mechanics and Calculation of Structures, (1), 60-64.
[5] Pugachev, V. S. (1965). Theory of Random Functions and its Application to Control Problems. Fizmatgiz, Moscow, Russia.
[6] Alderucci, T., Muscolino, G., & Urso, S. (2019). Stochastic analysis of linear structural systems under spectrum and site intensity compatible fully non-stationary artificial accelerograms. Soil Dynamics and Earthquake Engineering, 126, 105762. doi:10.1016/j.soildyn.2019.105762.
[7] Cacciola, P., & Zentner, I. (2012). Generation of response-spectrum-compatible artificial earthquake accelerograms with random joint time–frequency distributions. Probabilistic Engineering Mechanics, 28, 52–58. doi:10.1016/j.probengmech.2011.08.004.
[8] Rezaeian, S., & Der Kiureghian, A. (2010). Simulation of synthetic ground motions for specified earthquake and site characteristics. Earthquake Engineering & Structural Dynamics, 39(10), 1155–1180. doi:10.1002/eqe.997.
[9] Falamarz-Sheikhabadi, M. R., & Zerva, A. (2018). Two uncertainties in simulating spatially varying seismic ground motions: incoherency coefficient and apparent propagation velocity. Bulletin of Earthquake Engineering, 16(10), 4427–4441. doi:10.1007/s10518-018-0385-x.
[10] Mamaghani, M., & Lui, E. M. (2023). Use of Continuous Wavelet Transform to Generate Endurance Time Excitation Functions for Nonlinear Seismic Analysis of Structures. CivilEng, 4(3), 753–781. doi:10.3390/civileng4030043.
[11] Lapin, V. A., Yerzhanov, S. Y., & Essenberlina, D. I. (2020). Dynamics of a 16-storey building with a core of rigidity in a local earthquake. IOP Conference Series: Materials Science and Engineering, 953(1), 012086. doi:10.1088/1757-899x/953/1/012086.
[12] Fischer, E. G., & Fischer, T. P. (1998). Quasi-resonance effects observed in the 1994 Northridge earthquake, and others. Shock and Vibration, 5(3), 153–158. doi:10.1155/1998/418528.
[13] Yerzhanov, S. Y., & Lapin, V. A. (2021). Non-Canonic Representation of the Random Process in Tasks of Simulating Seismic Impacts for Calculating Buildings and Structures. IOP Conference Series: Materials Science and Engineering, 1079(3), 032055. doi:10.1088/1757-899x/1079/3/032055.
[14] Lapin, V., & A. (1998). Method for calculating the reliability of a nonlinear system under seismic influence. Earthquake-Resistant Construction, 5, 11–13.
[15] Mkrtychev, O. V., Dzhinchvelashvili, G. A., & Busalova, M. S. (2015). Assessing the reliability of a multi-storey monolithic concrete building with a base. Procedia Engineering, 111, 550–555. doi:10.1016/j.proeng.2015.07.041.
[16] Drozdov, V. V., Pshenichkina, V. A., & Sukhina, K. N. (2016). Evaluation of Reliability of the Earthquake Resistant Building Provided by Means of the Analysis for Design-Basis Earthquake. Procedia Engineering, 150, 1841–1847. doi:10.1016/j.proeng.2016.07.180.
[17] Der Kiureghian, A., & Zhang, Y. (1999). Space-variant finite element reliability analysis. Computer Methods in Applied Mechanics and Engineering, 168(1–4), 173–183. doi:10.1016/S0045-7825(98)00139-X.
[18] Guo, Q., Wang, S., Chen, S., & Sun, Y. (2020). Structural safety reliability of concrete buildings of HTR-PM in accidental double-ended break of hot gas ducts. Nuclear Engineering and Technology, 52(5), 1051–1065. doi:10.1016/j.net.2019.10.015.
[19] Pavani, R., Calio', F., & Garavaglia, E. (2003). Numerical modelling in building reliability using both a probabilistic approach and a delay differential model. Mathematical and Computer Modelling, 38(5–6), 551–558. doi:10.1016/s0895-7177(03)90026-4.
[20] Wu, C., Xu, J., Zhang, C., & Wang, J. (2023). Overall seismic reliability analysis of aqueduct structure based on different levels under random earthquake. Structures, 58. doi:10.1016/j.istruc.2023.105469.
[21] Kim, S., & Wallace, J. W. (2022). Reliability of structural wall shear design for tall reinforced-concrete core wall buildings. Engineering Structures, 252, 113492. doi:10.1016/j.engstruct.2021.113492.
[22] Aptikaev, F. F. (1979). The shape of the envelope of amplitudes of accelerations from records of strong motions: Sat. Soviet-American earthquake prediction works. – Dushanbe T. 2. – Book 2.139-147.
[23] Zhunusov, T. Z., Ashimbayev, M. U., Kravchenko, A. A., & Odonovich, V. F. (1979). Study of the inelastic work of reinforced concrete frames of one-story industrial buildings under dynamic impacts such as seismic. Collection: "Research on the seismic resistance of buildings and structures.” Almaty, issue 11(22).,48-61.
[24] Bulat, A. F., Dyrda, V. I., Lysytsya, M. I., & Grebenyuk, S. M. (2018). Numerical Simulation of the Stress-Strain State of Thin-Layer Rubber-Metal Vibration Absorber Elements Under Nonlinear Deformation. Strength of Materials, 50(3), 387–395. doi:10.1007/s11223-018-9982-9.
[25] Gulvanessian, H., & Holicky, M. (2012). Designers' Guide to Eurocode: Basis of Structural Design (2nd Ed.). Thomas Telford Ltd, London, United Kingdom. doi:10.1680/bsd.41714.
[26] Mkrtychev, O.V. & Raiser, V.D. (2016). Reliability theory in the design of building structures. M.: ASV. 978-5-4323-0189-5. 1-906.
[27] Thoft-Cristensen, P., & Baker, M. J. (2012). Structural reliability theory and its applications. Springer Berlin, Heidelberg, Germany. doi:10.1007/978-3-642-68697-9.
[28] Zhang, L., & Caracoglia, L. (2021). Layered Stochastic Approximation Monte-Carlo method for tall building and tower fragility in mixed wind load climates. Engineering Structures, 239, 112159. doi:10.1016/j.engstruct.2021.112159.
[29] Dyrda, V., Kobets, A., Bulat, I., Lapin, V., Lysytsia, N., Ahaltsov, H., & Sokol, S. (2019). Vibroseismic protection of heavy mining machines, buildings and structures. E3S Web of Conferences, 109, 22. doi:10.1051/e3sconf/201910900022.
[30] Montazeri, M., Namiranian, P., Pasand, A. A., & Aceto, L. (2023). Seismic performance of isolated buildings with friction spring damper. Structures, 55, 1481–1496. doi:10.1016/j.istruc.2023.06.116.
[31] Yang, K., Tan, P., Chen, H., Li, J., & Tan, J. (2024). Prediction of nonlinear seismic demand of inter-story isolated systems using improved multi-modal pushover analysis procedures. Journal of Building Engineering, 82, 108322. doi:10.1016/j.jobe.2023.108322.
[32] Bové, O., Golla, V. K., Oliver-Saiz, E., Bonada, J., & López-Almansa, F. (2024). Seismic pushover analysis of unbraced adjustable pallet racks in the down-aisle direction. Need for multimode analysis. Thin-Walled Structures, 195, 111444. doi:10.1016/j.tws.2023.111444.
[33] Khan, M. M., & Roy, A. K. (2024). Interference effect of buildings on high rise power station chimney subjected to wind: a numerical modelling approach. Innovative Infrastructure Solutions, 9(8), 327. doi:10.1007/s41062-024-01642-y.
[34] Zhao, H. (2023). Research on the Health Detection and Seismic Performance Evaluation of High-Rise Buildings. Procedia Computer Science, 228, 21–28. doi:10.1016/j.procs.2023.11.004.
[35] Paolacci, F., Giannini, R., Nam, P. H., Corritore, D., & Quinci, G. (2022). Scores: an algorithm for records selection to employ in seismic risk and resilience analysis. Procedia Structural Integrity, 44, 307–314. doi:10.1016/j.prostr.2023.01.040.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.