The Buildings’ Reliability Calculating Method Using a Simple Seismic Impact Model

Vladimir Lapin, Yeraly Shokbarov, Yerken Aldakhov

Abstract


Non-canonical spectral representation of seismic activity is employed to assess the reliability of nonlinearly modeled buildings. Seismic impact is modeled using a random process, represented by simple functions with random parameters. We consider random processes with correlation functions expressed as a sum of cosine-exponential terms. Reliability, defined as the probability of failure-free operation, is determined using statistical testing methods. The reliability calculation algorithm is implemented in MATLAB. As an illustrative example, we calculate the reliability of a section of a one-story industrial building frame modeled by a nonlinear system. Failure is defined as exceeding experimentally determined permissible displacement limits. Our calculations involve up to 2000 realizations of the random process. We analyze histograms, empirical distribution functions, and reliability values of maximum fragment movements. We find that using 100 realizations of the random process yields satisfactory accuracy in determining reliability. This reliability calculation method is recommended for rapid reliability estimates across various structure types, including those employing seismic isolation systems. We also observe a correlation between displacement magnitudes calculated under accelerograms and a random process represented in a non-canonical form. Thus, we recommend this method for reliability assessments in multi-story buildings.

 

Doi: 10.28991/CEJ-2024-010-08-019

Full Text: PDF


Keywords


Artificial Accelerograms; Earthquake-Resistant Construction; Seismic Impact; Reliability; Probability of Failure-Free Operation.

References


Chernetsky, A. I. (1968). Analysis of the accuracy of nonlinear control systems. Mechanical Engineering, Moscow, Russia. (In Russian).

Zhunusov, T. Z. Pak, E.F. & Lapin V.A. (1990). Earthquake resistance of frame buildings. Gylym, Almaty, Kazakhstan. (In Russian).

Bolotin, V.V. (1965). Statistical methods in building mechanics Publishing house of literature on construction, Moscow, Russia. (In Russian).

Bolotin, V.V. (1981). Statistical modeling based on earthquake resistance. Mechanics and Calculation of Structures, (1), 60-64.

Pugachev, V. S. (1965). Theory of Random Functions and its Application to Control Problems. Fizmatgiz, Moscow, Russia.

Alderucci, T., Muscolino, G., & Urso, S. (2019). Stochastic analysis of linear structural systems under spectrum and site intensity compatible fully non-stationary artificial accelerograms. Soil Dynamics and Earthquake Engineering, 126, 105762. doi:10.1016/j.soildyn.2019.105762.

Cacciola, P., & Zentner, I. (2012). Generation of response-spectrum-compatible artificial earthquake accelerograms with random joint time–frequency distributions. Probabilistic Engineering Mechanics, 28, 52–58. doi:10.1016/j.probengmech.2011.08.004.

Rezaeian, S., & Der Kiureghian, A. (2010). Simulation of synthetic ground motions for specified earthquake and site characteristics. Earthquake Engineering & Structural Dynamics, 39(10), 1155–1180. doi:10.1002/eqe.997.

Falamarz-Sheikhabadi, M. R., & Zerva, A. (2018). Two uncertainties in simulating spatially varying seismic ground motions: incoherency coefficient and apparent propagation velocity. Bulletin of Earthquake Engineering, 16(10), 4427–4441. doi:10.1007/s10518-018-0385-x.

Mamaghani, M., & Lui, E. M. (2023). Use of Continuous Wavelet Transform to Generate Endurance Time Excitation Functions for Nonlinear Seismic Analysis of Structures. CivilEng, 4(3), 753–781. doi:10.3390/civileng4030043.

Lapin, V. A., Yerzhanov, S. Y., & Essenberlina, D. I. (2020). Dynamics of a 16-storey building with a core of rigidity in a local earthquake. IOP Conference Series: Materials Science and Engineering, 953(1), 012086. doi:10.1088/1757-899x/953/1/012086.

Fischer, E. G., & Fischer, T. P. (1998). Quasi-resonance effects observed in the 1994 Northridge earthquake, and others. Shock and Vibration, 5(3), 153–158. doi:10.1155/1998/418528.

Yerzhanov, S. Y., & Lapin, V. A. (2021). Non-Canonic Representation of the Random Process in Tasks of Simulating Seismic Impacts for Calculating Buildings and Structures. IOP Conference Series: Materials Science and Engineering, 1079(3), 032055. doi:10.1088/1757-899x/1079/3/032055.

Lapin, V., & A. (1998). Method for calculating the reliability of a nonlinear system under seismic influence. Earthquake-Resistant Construction, 5, 11–13.

Mkrtychev, O. V., Dzhinchvelashvili, G. A., & Busalova, M. S. (2015). Assessing the reliability of a multi-storey monolithic concrete building with a base. Procedia Engineering, 111, 550–555. doi:10.1016/j.proeng.2015.07.041.

Drozdov, V. V., Pshenichkina, V. A., & Sukhina, K. N. (2016). Evaluation of Reliability of the Earthquake Resistant Building Provided by Means of the Analysis for Design-Basis Earthquake. Procedia Engineering, 150, 1841–1847. doi:10.1016/j.proeng.2016.07.180.

Der Kiureghian, A., & Zhang, Y. (1999). Space-variant finite element reliability analysis. Computer Methods in Applied Mechanics and Engineering, 168(1–4), 173–183. doi:10.1016/S0045-7825(98)00139-X.

Guo, Q., Wang, S., Chen, S., & Sun, Y. (2020). Structural safety reliability of concrete buildings of HTR-PM in accidental double-ended break of hot gas ducts. Nuclear Engineering and Technology, 52(5), 1051–1065. doi:10.1016/j.net.2019.10.015.

Pavani, R., Calio’, F., & Garavaglia, E. (2003). Numerical modelling in building reliability using both a probabilistic approach and a delay differential model. Mathematical and Computer Modelling, 38(5–6), 551–558. doi:10.1016/s0895-7177(03)90026-4.

Wu, C., Xu, J., Zhang, C., & Wang, J. (2023). Overall seismic reliability analysis of aqueduct structure based on different levels under random earthquake. Structures, 58. doi:10.1016/j.istruc.2023.105469.

Kim, S., & Wallace, J. W. (2022). Reliability of structural wall shear design for tall reinforced-concrete core wall buildings. Engineering Structures, 252, 113492. doi:10.1016/j.engstruct.2021.113492.

Aptikaev, F. F. (1979). The shape of the envelope of amplitudes of accelerations from records of strong motions: Sat. Soviet-American earthquake prediction works. – Dushanbe T. 2. – Book 2.139-147.

Zhunusov, T. Z., Ashimbayev, M. U., Kravchenko, A. A., & Odonovich, V. F. (1979). Study of the inelastic work of reinforced concrete frames of one-story industrial buildings under dynamic impacts such as seismic. Collection: “Research on the seismic resistance of buildings and structures.” Almaty, issue 11(22).,48-61.

Bulat, A. F., Dyrda, V. I., Lysytsya, M. I., & Grebenyuk, S. M. (2018). Numerical Simulation of the Stress-Strain State of Thin-Layer Rubber-Metal Vibration Absorber Elements Under Nonlinear Deformation. Strength of Materials, 50(3), 387–395. doi:10.1007/s11223-018-9982-9.

Gulvanessian, H., & Holicky, M. (2012). Designers’ Guide to Eurocode: Basis of Structural Design (2nd Ed.). Thomas Telford Ltd, London, United Kingdom. doi:10.1680/bsd.41714.

Mkrtychev, O.V. & Raiser, V.D. (2016). Reliability theory in the design of building structures. M.: ASV. 978-5-4323-0189-5. 1-906.

Thoft-Cristensen, P., & Baker, M. J. (2012). Structural reliability theory and its applications. Springer Berlin, Heidelberg, Germany. doi:10.1007/978-3-642-68697-9.

Zhang, L., & Caracoglia, L. (2021). Layered Stochastic Approximation Monte-Carlo method for tall building and tower fragility in mixed wind load climates. Engineering Structures, 239, 112159. doi:10.1016/j.engstruct.2021.112159.

Dyrda, V., Kobets, A., Bulat, I., Lapin, V., Lysytsia, N., Ahaltsov, H., & Sokol, S. (2019). Vibroseismic protection of heavy mining machines, buildings and structures. E3S Web of Conferences, 109, 22. doi:10.1051/e3sconf/201910900022.

Montazeri, M., Namiranian, P., Pasand, A. A., & Aceto, L. (2023). Seismic performance of isolated buildings with friction spring damper. Structures, 55, 1481–1496. doi:10.1016/j.istruc.2023.06.116.

Yang, K., Tan, P., Chen, H., Li, J., & Tan, J. (2024). Prediction of nonlinear seismic demand of inter-story isolated systems using improved multi-modal pushover analysis procedures. Journal of Building Engineering, 82, 108322. doi:10.1016/j.jobe.2023.108322.

Bové, O., Golla, V. K., Oliver-Saiz, E., Bonada, J., & López-Almansa, F. (2024). Seismic pushover analysis of unbraced adjustable pallet racks in the down-aisle direction. Need for multimode analysis. Thin-Walled Structures, 195, 111444. doi:10.1016/j.tws.2023.111444.

Khan, M. M., & Roy, A. K. (2024). Interference effect of buildings on high rise power station chimney subjected to wind: a numerical modelling approach. Innovative Infrastructure Solutions, 9(8), 327. doi:10.1007/s41062-024-01642-y.

Zhao, H. (2023). Research on the Health Detection and Seismic Performance Evaluation of High-Rise Buildings. Procedia Computer Science, 228, 21–28. doi:10.1016/j.procs.2023.11.004.

Paolacci, F., Giannini, R., Nam, P. H., Corritore, D., & Quinci, G. (2022). Scores: an algorithm for records selection to employ in seismic risk and resilience analysis. Procedia Structural Integrity, 44, 307–314. doi:10.1016/j.prostr.2023.01.040.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-08-019

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Vladimir Lapin, Yeraly Shokbarov, Yerken Aldakhov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message