Utilizing Recycled Sand from Excavation Wastes for Sustainable Cement Mortar Production
Downloads
Doi: 10.28991/CEJ-2024-010-06-012
Full Text: PDF
Downloads
[2] Priyadharshini, P., Ramamurthy, K., & Robinson, R. G. (2018). Sustainable reuse of excavation soil in cementitious composites. Journal of Cleaner Production, 176, 999–1011. doi:10.1016/j.jclepro.2017.11.256.
[3] Modi, P. I., Gajjar, R. K., & Sharma, A. K. (2024). Investigating the potential of dimensional sandstone waste used as a 50% replacement to sand in mortar for masonry. Innovative Infrastructure Solutions, 9(5), 135. doi:10.1007/s41062-024-01438-0.
[4] Bederina, M., Makhloufi, Z., Bounoua, A., Bouziani, T., & Quéneudec, M. (2013). Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions. Construction and Building Materials, 47, 146–158. doi:10.1016/j.conbuildmat.2013.05.037.
[5] Akhtar, A., & Sarmah, A. K. (2018). Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. Journal of Cleaner Production, 186, 262–281. doi:10.1016/j.jclepro.2018.03.085.
[6] Yuan, H., & Shen, L. (2011). Trend of the research on construction and demolition waste management. Waste Management, 31(4), 670–679. doi:10.1016/j.wasman.2010.10.030.
[7] Manzi, S., Mazzotti, C., & Bignozzi, M. C. (2013). Short and long-term behavior of structural concrete with recycled concrete aggregate. Cement and Concrete Composites, 37(1), 312–318. doi:10.1016/j.cemconcomp.2013.01.003.
[8] Kumar, S., Skariah Thomas, B., Gupta, V., Basu, P., & Shrivastava, S. (2018). Sandstone wastes as aggregate and its usefulness in cement concrete – A comprehensive review. Renewable and Sustainable Energy Reviews, 81, 1147–1153. doi:10.1016/j.rser.2017.08.044.
[9] Martín-Morales, M., Zamorano, M., Ruiz-Moyano, A., & Valverde-Espinosa, I. (2011). Characterization of recycled aggregates construction and demolition waste for concrete production following the Spanish Structural Concrete Code EHE-08. Construction and Building Materials, 25(2), 742–748. doi:10.1016/j.conbuildmat.2010.07.012.
[10] Cao, Y., Wang, Y., Zhang, Z., & Wang, H. (2022). Recycled sand from sandstone waste: A new source of high-quality fine aggregate. Resources, Conservation and Recycling, 179. doi:10.1016/j.resconrec.2021.106116.
[11] Lin, G., Zhang, L., Cheng, P., Yu, X., Miao, C., Qian, K., Ruan, S., & Qian, X. (2022). Application potential of granite cutting waste and tunnel excavation rock as fine aggregates in cement-based materials based on surface characteristics. Journal of Building Engineering, 62. doi:10.1016/j.jobe.2022.105380.
[12] Jasim, A. M. D. A., Wong, L. S., Kong, S. Y., Al-Zand, A. W., & Midhin, M. A. K. (2023). An Evaluative Review of Recycled Waste Material Utilization in High-Performance Concrete. Civil Engineering Journal (Iran), 9(11), 2927–2957. doi:10.28991/CEJ-2023-09-11-020.
[13] Corinaldesi, V., Moriconi, G., & Naik, T. R. (2010). Characterization of marble powder for its use in mortar and concrete. Construction and Building Materials, 24(1), 113–117. doi:10.1016/j.conbuildmat.2009.08.013.
[14] Corinaldesi, V., & Moriconi, G. (2009). Behaviour of cementitious mortars containing different kinds of recycled aggregate. Construction and Building Materials, 23(1), 289–294. doi:10.1016/j.conbuildmat.2007.12.006.
[15] Le, M. T., Tribout, C., & Escadeillas, G. (2019). Durability of mortars with leftover recycled sand. Construction and Building Materials, 215, 391–400. doi:10.1016/j.conbuildmat.2019.04.179.
[16] Menadi, B., Kenai, S., Khatib, J., & Aí¯t-Mokhtar, A. (2009). Strength and durability of concrete incorporating crushed limestone sand. Construction and Building Materials, 23(2), 625–633. doi:10.1016/j.conbuildmat.2008.02.005.
[17] Rana, A., Kalla, P., & Csetenyi, L. J. (2017). Recycling of dimension limestone industry waste in concrete. International Journal of Mining, Reclamation and Environment, 31(4), 231–250. doi:10.1080/17480930.2016.1138571.
[18] Mundra, S., Agrawal, V., & Nagar, R. (2020). Sandstone cutting waste as partial replacement of fine aggregates in concrete: A mechanical strength perspective. Journal of Building Engineering, 32. doi:10.1016/j.jobe.2020.101534.
[19] Singh, J., Mukherjee, A., Dhiman, V. K., & Deepmala. (2020). Impact of crushed limestone dust on concrete's properties. Materials Today: Proceedings, 43, 341–347. doi:10.1016/j.matpr.2020.11.674.
[20] Ma, R., Zhang, L., Chen, Z., Miao, C., Zhang, C., Fan, T., Zhang, J., & Qian, X. (2024). Utilization of solid waste from tunnel excavation as manufactured sand with different lithology and pre-washing process for preparation of eco-friendly ultra-high performance concretes: Properties and microstructural analysis. Journal of Building Engineering, 82. doi:10.1016/j.jobe.2023.108252.
[21] Safiddine, S., Debieb, F., Kadri, E. H., Menadi, B., & Soualhi, H. (2017). Effect of crushed sand and limestone crushed sand dust on the rheology of cement mortar. Applied Rheology, 27(1), 12-20. doi:10.3933/applrheol-27-14490.
[22] Hassan, K., Reid, M., & Al-Kuwari, M. B. S. (2022). Implementation of Recycled Aggregate in Construction. QNRF NPRP NO: 7 – 795 – 2 – 296, Doha, Qatar.
[23] ASTM C136/C136M-19. (2020). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0136_C0136M-19.
[24] ASTM C128-22. (2023). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-22.
[25] Mundra, S., Sindhi, P. R., Chandwani, V., Nagar, R., & Agrawal, V. (2016). Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix. Perspectives in Science, 8, 345–347. doi:10.1016/j.pisc.2016.04.070.
[26] Cortes, D. D., Kim, H. K., Palomino, A. M., & Santamarina, J. C. (2008). Rheological and mechanical properties of mortars prepared with natural and manufactured sands. Cement and Concrete Research, 38(10), 1142–1147. doi:10.1016/j.cemconres.2008.03.020.
[27] de Andrade Salgado, F., & de Andrade Silva, F. (2022). Recycled aggregates from construction and demolition waste towards an application on structural concrete: A review. Journal of Building Engineering, 52, 104452. doi:10.1016/j.jobe.2022.104452.
[28] ASTM C778-21. (2021). Standard Specification for Standard Sand. ASTM International, Pennsylvania, United States. doi:10.1520/C0778-21
[29] ASTM C305-20. (2020). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International, Pennsylvania, United States. doi:10.1520/C0305-20.
[30] ASTM C109/C109M-21. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-21.
[31] ASTM C1437-20. (2020). Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International, Pennsylvania, United States. doi:10.1520/C1437-20.
[32] ASTM C1403-15. (2022). Standard Test Method for Rate of Water Absorption of Masonry Mortars. ASTM International, Pennsylvania, United States. doi:10.1520/C1403-15.
[33] Hu, J., & Wang, K. (2007). Effects of size and uncompacted voids of aggregate on mortar flow ability. Journal of Advanced Concrete Technology, 5(1), 75–85. doi:10.3151/jact.5.75.
[34] Nedeljković, M., Visser, J., Рavija, B., Valcke, S., & Schlangen, E. (2021). Use of fine recycled concrete aggregates in concrete: A critical review. Journal of Building Engineering, 38, 102196. doi:10.1016/j.jobe.2021.102196.
[35] Almeida, N., Branco, F., de Brito, J., & Santos, J. R. (2007). High-performance concrete with recycled stone slurry. Cement and Concrete Research, 37(2), 210–220. doi:10.1016/j.cemconres.2006.11.003.
[36] Martínez, I., Etxeberria, M., Pavón, E., & Díaz, N. (2016). Analysis of the properties of masonry mortars made with recycled fine aggregates for use as a new building material in Cuba. Revista de La Construcción, 15(1), 9–21. doi:10.4067/s0718-915x2016000100001.
[37] Irshidat, M. R., Al-Nuaimi, N., Ahmed, W., & Rabie, M. (2021). Feasibility of recycling waste carbon black in cement mortar production: Environmental life cycle assessment and performance evaluation. Construction and Building Materials, 296, 123740. doi:10.1016/j.conbuildmat.2021.123740.
[38] Irshidat, M. R., Al-Nuaimi, N., & Rabie, M. (2021). Potential utilization of municipal solid waste incineration ashes as sand replacement for developing sustainable cementitious binder. Construction and Building Materials, 312, 125488. doi:10.1016/j.conbuildmat.2021.125488.
[39] Irshidat, M. R., Al-Nuaimi, N., & Rabie, M. (2022). Sustainable alkali-activated binders with municipal solid waste incineration ashes as sand or fly ash replacement. Journal of Material Cycles and Waste Management, 24(3), 992–1008. doi:10.1007/s10163-022-01374-0.
[40] Shen, P., Zheng, H., Xuan, D., Lu, J. X., & Poon, C. S. (2020). Feasible use of municipal solid waste incineration bottom ash in ultra-high performance concrete. Cement and Concrete Composites, 114, 103814. doi:10.1016/j.cemconcomp.2020.103814.
[41] Polettini, A., Polettini, S., Pomi, R., & Sirini, P. (2000). Physical properties and acid neutralisation capacity of incinerator bottom ash-portland cement mixtures. Waste Management Series, 1(C), 791–802. doi:10.1016/S0713-2743(00)80089-6.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.