Utilizing Recycled Sand from Excavation Wastes for Sustainable Cement Mortar Production
Abstract
Doi: 10.28991/CEJ-2024-010-06-012
Full Text: PDF
Keywords
References
Bhoopathy, V., & Subramanian, S. S. (2022). The way forward to sustain environmental quality through sustainable sand mining and the use of manufactured sand as an alternative to natural sand. Environmental Science and Pollution Research, 29(21), 30793–30801. doi:10.1007/s11356-022-19633-w.
Priyadharshini, P., Ramamurthy, K., & Robinson, R. G. (2018). Sustainable reuse of excavation soil in cementitious composites. Journal of Cleaner Production, 176, 999–1011. doi:10.1016/j.jclepro.2017.11.256.
Modi, P. I., Gajjar, R. K., & Sharma, A. K. (2024). Investigating the potential of dimensional sandstone waste used as a 50% replacement to sand in mortar for masonry. Innovative Infrastructure Solutions, 9(5), 135. doi:10.1007/s41062-024-01438-0.
Bederina, M., Makhloufi, Z., Bounoua, A., Bouziani, T., & Quéneudec, M. (2013). Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions. Construction and Building Materials, 47, 146–158. doi:10.1016/j.conbuildmat.2013.05.037.
Akhtar, A., & Sarmah, A. K. (2018). Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. Journal of Cleaner Production, 186, 262–281. doi:10.1016/j.jclepro.2018.03.085.
Yuan, H., & Shen, L. (2011). Trend of the research on construction and demolition waste management. Waste Management, 31(4), 670–679. doi:10.1016/j.wasman.2010.10.030.
Manzi, S., Mazzotti, C., & Bignozzi, M. C. (2013). Short and long-term behavior of structural concrete with recycled concrete aggregate. Cement and Concrete Composites, 37(1), 312–318. doi:10.1016/j.cemconcomp.2013.01.003.
Kumar, S., Skariah Thomas, B., Gupta, V., Basu, P., & Shrivastava, S. (2018). Sandstone wastes as aggregate and its usefulness in cement concrete – A comprehensive review. Renewable and Sustainable Energy Reviews, 81, 1147–1153. doi:10.1016/j.rser.2017.08.044.
Martín-Morales, M., Zamorano, M., Ruiz-Moyano, A., & Valverde-Espinosa, I. (2011). Characterization of recycled aggregates construction and demolition waste for concrete production following the Spanish Structural Concrete Code EHE-08. Construction and Building Materials, 25(2), 742–748. doi:10.1016/j.conbuildmat.2010.07.012.
Cao, Y., Wang, Y., Zhang, Z., & Wang, H. (2022). Recycled sand from sandstone waste: A new source of high-quality fine aggregate. Resources, Conservation and Recycling, 179. doi:10.1016/j.resconrec.2021.106116.
Lin, G., Zhang, L., Cheng, P., Yu, X., Miao, C., Qian, K., Ruan, S., & Qian, X. (2022). Application potential of granite cutting waste and tunnel excavation rock as fine aggregates in cement-based materials based on surface characteristics. Journal of Building Engineering, 62. doi:10.1016/j.jobe.2022.105380.
Jasim, A. M. D. A., Wong, L. S., Kong, S. Y., Al-Zand, A. W., & Midhin, M. A. K. (2023). An Evaluative Review of Recycled Waste Material Utilization in High-Performance Concrete. Civil Engineering Journal (Iran), 9(11), 2927–2957. doi:10.28991/CEJ-2023-09-11-020.
Corinaldesi, V., Moriconi, G., & Naik, T. R. (2010). Characterization of marble powder for its use in mortar and concrete. Construction and Building Materials, 24(1), 113–117. doi:10.1016/j.conbuildmat.2009.08.013.
Corinaldesi, V., & Moriconi, G. (2009). Behaviour of cementitious mortars containing different kinds of recycled aggregate. Construction and Building Materials, 23(1), 289–294. doi:10.1016/j.conbuildmat.2007.12.006.
Le, M. T., Tribout, C., & Escadeillas, G. (2019). Durability of mortars with leftover recycled sand. Construction and Building Materials, 215, 391–400. doi:10.1016/j.conbuildmat.2019.04.179.
Menadi, B., Kenai, S., Khatib, J., & Aït-Mokhtar, A. (2009). Strength and durability of concrete incorporating crushed limestone sand. Construction and Building Materials, 23(2), 625–633. doi:10.1016/j.conbuildmat.2008.02.005.
Rana, A., Kalla, P., & Csetenyi, L. J. (2017). Recycling of dimension limestone industry waste in concrete. International Journal of Mining, Reclamation and Environment, 31(4), 231–250. doi:10.1080/17480930.2016.1138571.
Mundra, S., Agrawal, V., & Nagar, R. (2020). Sandstone cutting waste as partial replacement of fine aggregates in concrete: A mechanical strength perspective. Journal of Building Engineering, 32. doi:10.1016/j.jobe.2020.101534.
Singh, J., Mukherjee, A., Dhiman, V. K., & Deepmala. (2020). Impact of crushed limestone dust on concrete’s properties. Materials Today: Proceedings, 43, 341–347. doi:10.1016/j.matpr.2020.11.674.
Ma, R., Zhang, L., Chen, Z., Miao, C., Zhang, C., Fan, T., Zhang, J., & Qian, X. (2024). Utilization of solid waste from tunnel excavation as manufactured sand with different lithology and pre-washing process for preparation of eco-friendly ultra-high performance concretes: Properties and microstructural analysis. Journal of Building Engineering, 82. doi:10.1016/j.jobe.2023.108252.
Safiddine, S., Debieb, F., Kadri, E. H., Menadi, B., & Soualhi, H. (2017). Effect of crushed sand and limestone crushed sand dust on the rheology of cement mortar. Applied Rheology, 27(1), 12-20. doi:10.3933/applrheol-27-14490.
Hassan, K., Reid, M., & Al-Kuwari, M. B. S. (2022). Implementation of Recycled Aggregate in Construction. QNRF NPRP NO: 7 – 795 – 2 – 296, Doha, Qatar.
ASTM C136/C136M-19. (2020). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0136_C0136M-19.
ASTM C128-22. (2023). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-22.
Mundra, S., Sindhi, P. R., Chandwani, V., Nagar, R., & Agrawal, V. (2016). Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix. Perspectives in Science, 8, 345–347. doi:10.1016/j.pisc.2016.04.070.
Cortes, D. D., Kim, H. K., Palomino, A. M., & Santamarina, J. C. (2008). Rheological and mechanical properties of mortars prepared with natural and manufactured sands. Cement and Concrete Research, 38(10), 1142–1147. doi:10.1016/j.cemconres.2008.03.020.
de Andrade Salgado, F., & de Andrade Silva, F. (2022). Recycled aggregates from construction and demolition waste towards an application on structural concrete: A review. Journal of Building Engineering, 52, 104452. doi:10.1016/j.jobe.2022.104452.
ASTM C778-21. (2021). Standard Specification for Standard Sand. ASTM International, Pennsylvania, United States. doi:10.1520/C0778-21
ASTM C305-20. (2020). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International, Pennsylvania, United States. doi:10.1520/C0305-20.
ASTM C109/C109M-21. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-21.
ASTM C1437-20. (2020). Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International, Pennsylvania, United States. doi:10.1520/C1437-20.
ASTM C1403-15. (2022). Standard Test Method for Rate of Water Absorption of Masonry Mortars. ASTM International, Pennsylvania, United States. doi:10.1520/C1403-15.
Hu, J., & Wang, K. (2007). Effects of size and uncompacted voids of aggregate on mortar flow ability. Journal of Advanced Concrete Technology, 5(1), 75–85. doi:10.3151/jact.5.75.
Nedeljković, M., Visser, J., Šavija, B., Valcke, S., & Schlangen, E. (2021). Use of fine recycled concrete aggregates in concrete: A critical review. Journal of Building Engineering, 38, 102196. doi:10.1016/j.jobe.2021.102196.
Almeida, N., Branco, F., de Brito, J., & Santos, J. R. (2007). High-performance concrete with recycled stone slurry. Cement and Concrete Research, 37(2), 210–220. doi:10.1016/j.cemconres.2006.11.003.
Martínez, I., Etxeberria, M., Pavón, E., & Díaz, N. (2016). Analysis of the properties of masonry mortars made with recycled fine aggregates for use as a new building material in Cuba. Revista de La Construcción, 15(1), 9–21. doi:10.4067/s0718-915x2016000100001.
Irshidat, M. R., Al-Nuaimi, N., Ahmed, W., & Rabie, M. (2021). Feasibility of recycling waste carbon black in cement mortar production: Environmental life cycle assessment and performance evaluation. Construction and Building Materials, 296, 123740. doi:10.1016/j.conbuildmat.2021.123740.
Irshidat, M. R., Al-Nuaimi, N., & Rabie, M. (2021). Potential utilization of municipal solid waste incineration ashes as sand replacement for developing sustainable cementitious binder. Construction and Building Materials, 312, 125488. doi:10.1016/j.conbuildmat.2021.125488.
Irshidat, M. R., Al-Nuaimi, N., & Rabie, M. (2022). Sustainable alkali-activated binders with municipal solid waste incineration ashes as sand or fly ash replacement. Journal of Material Cycles and Waste Management, 24(3), 992–1008. doi:10.1007/s10163-022-01374-0.
Shen, P., Zheng, H., Xuan, D., Lu, J. X., & Poon, C. S. (2020). Feasible use of municipal solid waste incineration bottom ash in ultra-high performance concrete. Cement and Concrete Composites, 114, 103814. doi:10.1016/j.cemconcomp.2020.103814.
Polettini, A., Polettini, S., Pomi, R., & Sirini, P. (2000). Physical properties and acid neutralisation capacity of incinerator bottom ash-portland cement mixtures. Waste Management Series, 1(C), 791–802. doi:10.1016/S0713-2743(00)80089-6.
DOI: 10.28991/CEJ-2024-010-06-012
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nour Bader, Mohammad R. Irshidat, Osama Maglad

This work is licensed under a Creative Commons Attribution 4.0 International License.