Evaluation of an Outdoor Pilot Scale Hybrid Growth Algal-Bacterial System for Wastewater Bioremediation
DOI:
https://doi.org/10.28991/CEJ-2024-010-11-09Keywords:
Algal-Bacterial, Wastewater Treatment, Removal Efficiency, Hybrid Attached Growth.Abstract
Synergistic cooperation and interaction between algae and bacteria had made it easy by using one single step only to efficiently eliminate the impurities found in wastewater. High pollution levels triggered by the disposal of untreated wastewater and the harsh social and economic conditions, together with high construction and operation costs of conventional wastewater treatment systems, made it vital to find simple, efficient, cost-effective treatment systems. In this research work, a hybrid microalgae-bacteria pilot outdoor system comprised of a series of Algaewheel® rotating algae contactors (RACs) that receive preliminary treated domestic wastewater at a hydraulic retention time (HRT) of 8 hours was monitored for a period of 5 months. An average dissolved oxygen (DO) value of 3.04 ± 1.02 mgLâ»Â¹ was obtained in the effluent-treated wastewater. While the average removal efficiencies recorded for the parameters monitored were 90.73% for BOD5, 89.10% for COD, 93.45% for TSS, 77.05% for NH3-N, and 70.40% for TN. All the effluent values for the parameters monitored were below the limits of both the local and international standards. The pilot system was found to be suitable and adaptable for small communities with low discharges of 5000 m³/day or less due to its low operation and maintenance requirements, as its electricity consumption is 80% less compared with the conventional wastewater treatment systems.Â
Doi: 10.28991/CEJ-2024-010-11-09
Full Text: PDF
References
[1] Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275. doi:10.1016/j.sjbs.2012.04.005.
[2] Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 752. doi:10.1016/j.scitotenv.2020.142168.
[3] Mathew, M. M., Khatana, K., Vats, V., Dhanker, R., Kumar, R., Dahms, H. U., & Hwang, J. S. (2022). Biological Approaches Integrating Algae and Bacteria for the Degradation of Wastewater Contaminants—A Review. Frontiers in Microbiology, 12(February). doi:10.3389/fmicb.2021.801051.
[4] Ali, S. S., Hassan, L. H. S., & El-Sheekh, M. (2024). Microalgae-mediated bioremediation: current trends and opportunities-a review. Archives of Microbiology, 206(8), 343. doi:10.1007/s00203-024-04052-x.
[5] Wollmann, F., Dietze, S., Ackermann, J. U., Bley, T., Walther, T., Steingroewer, J., & Krujatz, F. (2019). Microalgae wastewater treatment: Biological and technological approaches. Engineering in Life Sciences, 19(12), 860–871. doi:10.1002/elsc.201900071.
[6] Silva-Gálvez, A. L., López-Sánchez, A., Camargo-Valero, M. A., Prosenc, F., González-López, M. E., & Gradilla-Hernández, M. S. (2024). Strategies for livestock wastewater treatment and optimised nutrient recovery using microalgal-based technologies. Journal of Environmental Management, 354, 120258. doi:10.1016/j.jenvman.2024.120258.
[7] Plöhn, M., Spain, O., Sirin, S., Silva, M., Escudero-Oñate, C., Ferrando-Climent, L., Allahverdiyeva, Y., & Funk, C. (2021). Wastewater treatment by microalgae. Physiologia Plantarum, 173(2), 568–578. doi:10.1111/ppl.13427.
[8] Ejike David Ugwuanyi, Zamathula Queen Sikhakhane Nwokediegwu, Michael Ayorinde Dada, Michael Tega Majemite, & Alexander Obaigbena. (2024). The role of algae-based wastewater treatment systems: A comprehensive review. World Journal of Advanced Research and Reviews, 21(2), 937–949. doi:10.30574/wjarr.2024.21.2.0521.
[9] Al Ketife, A. M. D., Almomani, F., EL-Naas, M., & Judd, S. (2019). A technoeconomic assessment of microalgal culture technology implementation for combined wastewater treatment and CO2 mitigation in the Arabian Gulf. Process Safety and Environmental Protection, 127, 90–102. doi:10.1016/j.psep.2019.05.003.
[10] Paddock, M. B. (2019). Microalgae Wastewater Treatment: a Brief History. Preprints, 1(19), 1–25. doi:10.20944/preprints201912.0377.v1.
[11] Ahmad, I., Abdullah, N., Koji, I., Yuzir, A., & Mohamad, S. E. (2021). Potential of microalgae in bioremediation of wastewater. Bulletin of Chemical Reaction Engineering and Catalysis, 16(2), 413–429. doi:10.9767/bcrec.16.2.10616.413-429.
[12] Oruganti, R. K., Katam, K., Show, P. L., Gadhamshetty, V., Upadhyayula, V. K. K., & Bhattacharyya, D. (2022). A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered, 13(4), 10412–10453. doi:10.1080/21655979.2022.2056823.
[13] Oviedo, J. A., Muñoz, R., Donoso-Bravo, A., Bernard, O., Casagli, F., & Jeison, D. (2022). A half-century of research on microalgae-bacteria for wastewater treatment. Algal Research, 67, 102828. doi:10.1016/j.algal.2022.102828.
[14] Abdelfattah, A., Ali, S. S., Ramadan, H., El-Aswar, E. I., Eltawab, R., Ho, S. H., Elsamahy, T., Li, S., El-Sheekh, M. M., Schagerl, M., Kornaros, M., & Sun, J. (2023). Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environmental Science and Ecotechnology, 13, 100205. doi:10.1016/j.ese.2022.100205.
[15] Oberholster, P. J., Schoeman, Y., & Botha, A. M. (2024). Is Africa Ready to Use Phycoremediation to Treat Domestic Wastewater as an Alternative Natural Base Solution? A Case Study. Phycology, 4(1), 153–167. doi:10.3390/phycology4010009.
[16] Kong, W., Kong, J., Feng, S., Yang, T. T., Xu, L., Shen, B., Bi, Y., & Lyu, H. (2024). Cultivation of microalgae–bacteria consortium by waste gas–waste water to achieve CO2 fixation, wastewater purification and bioproducts production. Biotechnology for Biofuels and Bioproducts, 17(1), 26. doi:10.1186/s13068-023-02409-w.
[17] Mahapatra, D. M., Chanakya, H. N., & Ramachandra, T. V. (2013). Treatment efficacy of algae-based sewage treatment plants. Environmental Monitoring and Assessment, 185(9), 7145–7164. doi:10.1007/s10661-013-3090-x.
[18] Tricolici, O., Bumbac, C., & Postolache, C. (2014). Microalgae-bacteria system for biological wastewater treatment. Journal of Environmental Protection and Ecology, 15(1), 268–276.
[19] Khaldi, H., Maatoug, M., Dube, C. S., Ncube, M., Tandlich, R., Heilmeier, H., Laubscher, R. K., & Dellal, A. (2017). Efficiency of wastewater treatment by a mixture of sludge and microalgae. Journal of Fundamental and Applied Sciences, 9(3), 1454. doi:10.4314/jfas.v9i3.13.
[20] Lee, S. A., Lee, N., Oh, H. M., & Ahn, C. Y. (2019). Enhanced and balanced microalgal wastewater treatment (COD, N, and P) by interval inoculation of activated sludge. Journal of Microbiology and Biotechnology, 29(9), 1434–1443. doi:10.4014/jmb.1905.05034.
[21] Moondra, N., Jariwala, N. D., & Christian, R. A. (2020). Sustainable treatment of domestic wastewater through microalgae. International Journal of Phytoremediation, 22(14), 1480–1486. doi:10.1080/15226514.2020.1782829.
[22] Mao, Y., Xiong, R., Gao, X., Jiang, L., Peng, Y., & Xue, Y. (2021). Analysis of the status and improvement of microalgal phosphorus removal from municipal wastewater. Processes, 9(9). doi:10.3390/pr9091486.
[23] Nguyen, L. N., Aditya, L., Vu, H. P., Johir, A. H., Bennar, L., Ralph, P., Hoang, N. B., Zdarta, J., & Nghiem, L. D. (2022). Nutrient Removal by Algae-Based Wastewater Treatment. Current Pollution Reports, 8(4), 369–383. doi:10.1007/s40726-022-00230-x.
[24] Gururani, P., Bhatnagar, P., Kumar, V., Vlaskin, M. S., & Grigorenko, A. V. (2022). Algal Consortiums: A Novel and Integrated Approach for Wastewater Treatment. Water (Switzerland), 14(22), 3784. doi:10.3390/w14223784.
[25] Boonchai, R., Seo, G. T., Park, D. R., & Seong, C. Y. (2012). Microalgae Photobioreactor for Nitrogen and Phosphorus Removal from Wastewater of Sewage Treatment Plant. International Journal of Bioscience, Biochemistry and Bioinformatics, 2(6), 407–410. doi:10.7763/ijbbb.2012.v2.143.
[26] Etisa, D. (2018). Some Application of Microalgae in Sewage Treatment, there Availability and Sampling Protocol up to Conservation with Factor Encounter. Advances in Oceanography & Marine Biology, 1(1), 1–5. doi:10.33552/aomb.2018.01.000502.
[27] Alazaiza, M. Y. D., He, S., Su, D., Abu Amr, S. S., Toh, P. Y., & Bashir, M. J. K. (2023). Sewage Water Treatment Using Chlorella Vulgaris Microalgae for Simultaneous Nutrient Separation and Biomass Production. Separations, 10(4). doi:10.3390/separations10040229.
[28] Roychoudhury, H. (2020). Bioremediation of Wastewater – Effect of Algae in Bioremediation of Nitrate and Phosphate Content in Wastewater. International Journal of High School Research, 2(2), 1–3. doi:10.36838/v2i2.1.
[29] Choi, H. J., & Lee, S. M. (2012). Effects of microalgae on the removal of nutrients from wastewater: Various concentrations of Chlorella vulgaris. Environmental Engineering Research, 17(S1), 3–8. doi:10.4491/eer.2012.17.S1.S3.
[30] Suresh Kumar, K., Dahms, H. U., Won, E. J., Lee, J. S., & Shin, K. H. (2015). Microalgae - A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352. doi:10.1016/j.ecoenv.2014.12.019.
[31] Goswami, R. K., Agrawal, K., Shah, M. P., & Verma, P. (2022). Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Letters in Applied Microbiology, 75(4), 701–717. doi:10.1111/lam.13564.
[32] Spain, O., Plöhn, M., & Funk, C. (2021). The cell wall of green microalgae and its role in heavy metal removal. Physiologia Plantarum, 173(2), 526–535. doi:10.1111/ppl.13405.
[33] Chugh, M., Kumar, L., Shah, M. P., & Bharadvaja, N. (2022). Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus, 7(July), 100129. doi:10.1016/j.nexus.2022.100129.
[34] Zhao, Y., Ge, Z., Lui, H., & Sun, S. (2016). Ability of different microalgae species in synthetic high-strength wastewater treatment and potential lipid production. Journal of Chemical Technology and Biotechnology, 91(11), 2888–2895. doi:10.1002/jctb.4905.
[35] Encarnação, T., Palito, C., Pais, A. A. C. C., Valente, A. J. M., & Burrows, H. D. (2020). Removal of pharmaceuticals from water by free and imobilised microalgae. Molecules, 25(16), 3639. doi:10.3390/molecules25163639.
[36] Torres-Franco, A., Passos, F., Figueredo, C., Mota, C., & Muñoz, R. (2021). Current advances in microalgae-based treatment of high-strength wastewaters: challenges and opportunities to enhance wastewater treatment performance. Reviews in Environmental Science and Biotechnology, 20(1), 209–235. doi:10.1007/s11157-020-09556-8.
[37] Hwang, J. H., Church, J., Lee, S. J., Park, J., & Lee, W. H. (2016). Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation. Environmental Engineering Science, 33(11), 882–897. doi:10.1089/ees.2016.0132.
[38] Uggetti, E., GarcÃa, J., Ãlvarez, J. A., & GarcÃa-Galán, M. J. (2018). Start-up of a microalgae-based treatment system within the biorefinery concept: From wastewater to bioproducts. Water Science and Technology, 78(1), 114–124. doi:10.2166/wst.2018.195.
[39] Marella, T. K., López-Pacheco, I. Y., Parra-SaldÃvar, R., Dixit, S., & Tiwari, A. (2020). Wealth from waste: Diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Science of the Total Environment, 724. doi:10.1016/j.scitotenv.2020.137960.
[40] Al-Jabri, H., Das, P., Khan, S., Thaher, M., & Abdulquadir, M. (2021). Treatment of wastewaters by microalgae and the potential applications of the produced biomass—a review. Water (Switzerland), 13(1), 27. doi:10.3390/w13010027.
[41] Khan, S., Das, P., Abdul Quadir, M., Thaher, M. I., Mahata, C., Sayadi, S., & Al-Jabri, H. (2023). Microalgal Feedstock for Biofuel Production: Recent Advances, Challenges, and Future Perspective. Fermentation, 9(3), 281. doi:10.3390/fermentation9030281.
[42] Johnson, D. B., Schideman, L. C., Canam, T., & Hudson, R. J. M. (2018). Pilot-scale demonstration of efficient ammonia removal from a high-strength municipal wastewater treatment side stream by algal-bacterial biofilms affixed to rotating contactors. Algal Research, 34, 143–153. doi:10.1016/j.algal.2018.07.009.
[43] Rosso, D., Larson, L. E., & Stenstrom, M. K. (2008). Aeration of large-scale municipal wastewater treatment plants: State of the art. Water Science and Technology, 57(7), 973–978. doi:10.2166/wst.2008.218.
[44] American Public Health Association (APHA). (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association (APHA), Washington, United States.
[45] Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F. X., & van Langenhove, H. (2010). Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions. Trends in Biotechnology, 28(7), 371–380. doi:10.1016/j.tibtech.2010.04.004.
[46] Pawlita-Posmyk, M., Wzorek, M., & Płaczek, M. (2018). The influence of temperature on algal biomass growth for biogas production. MATEC Web of Conferences, 240, 4008. doi:10.1051/matecconf/201824004008.
[47] Kuenen, J. G., Jørgensen, B. B., & Revsbech, N. P. (1986). Oxygen microprofiles of trickling filter biofilms. Water Research, 20(12), 1589–1598. doi:10.1016/0043-1354(86)90125-9.
[48] Su, Y., Mennerich, A., & Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research, 45(11), 3351–3358. doi:10.1016/j.watres.2011.03.046.
[49] Peng, J., Kumar, K., Gross, M., Kunetz, T., & Wen, Z. (2020). Removal of total dissolved solids from wastewater using a revolving algal biofilm reactor. Water Environment Research, 92(5), 766–778. doi:10.1002/wer.1273.
[50] Ghalhari, M. A., Mafigholami, R., Takdastan, A., & Khoshmaneshzadeh, B. (2022). Optimization of the biological salt removal process from artificial industrial wastewater with high TDS by Spirulina microalga using the response surface method. Water Science and Technology, 86(5), 1168–1180. doi:10.2166/wst.2022.270.
[51] Hammouda, O., Gaber, A., & Abdel-Raouf, N. (1995). Microalgae and wastewater treatment. Ecotoxicology and Environmental Safety, 31(3), 205–210. doi:10.1006/eesa.1995.1064.
[52] Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28(1), 64–70. doi:10.1016/j.ecoleng.2006.04.003.
[53] Fard, F. A., Yengejeh, R. J., & Ghaeni, M. (2021). Efficiency of microalgae Scenedesmus in the removal of nitrogen from municipal wastewaters. Iranian Journal of Toxicology, 13(2), 1–6. doi:10.32598/IJT.13.2.483.2.
[2] Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 752. doi:10.1016/j.scitotenv.2020.142168.
[3] Mathew, M. M., Khatana, K., Vats, V., Dhanker, R., Kumar, R., Dahms, H. U., & Hwang, J. S. (2022). Biological Approaches Integrating Algae and Bacteria for the Degradation of Wastewater Contaminants—A Review. Frontiers in Microbiology, 12(February). doi:10.3389/fmicb.2021.801051.
[4] Ali, S. S., Hassan, L. H. S., & El-Sheekh, M. (2024). Microalgae-mediated bioremediation: current trends and opportunities-a review. Archives of Microbiology, 206(8), 343. doi:10.1007/s00203-024-04052-x.
[5] Wollmann, F., Dietze, S., Ackermann, J. U., Bley, T., Walther, T., Steingroewer, J., & Krujatz, F. (2019). Microalgae wastewater treatment: Biological and technological approaches. Engineering in Life Sciences, 19(12), 860–871. doi:10.1002/elsc.201900071.
[6] Silva-Gálvez, A. L., López-Sánchez, A., Camargo-Valero, M. A., Prosenc, F., González-López, M. E., & Gradilla-Hernández, M. S. (2024). Strategies for livestock wastewater treatment and optimised nutrient recovery using microalgal-based technologies. Journal of Environmental Management, 354, 120258. doi:10.1016/j.jenvman.2024.120258.
[7] Plöhn, M., Spain, O., Sirin, S., Silva, M., Escudero-Oñate, C., Ferrando-Climent, L., Allahverdiyeva, Y., & Funk, C. (2021). Wastewater treatment by microalgae. Physiologia Plantarum, 173(2), 568–578. doi:10.1111/ppl.13427.
[8] Ejike David Ugwuanyi, Zamathula Queen Sikhakhane Nwokediegwu, Michael Ayorinde Dada, Michael Tega Majemite, & Alexander Obaigbena. (2024). The role of algae-based wastewater treatment systems: A comprehensive review. World Journal of Advanced Research and Reviews, 21(2), 937–949. doi:10.30574/wjarr.2024.21.2.0521.
[9] Al Ketife, A. M. D., Almomani, F., EL-Naas, M., & Judd, S. (2019). A technoeconomic assessment of microalgal culture technology implementation for combined wastewater treatment and CO2 mitigation in the Arabian Gulf. Process Safety and Environmental Protection, 127, 90–102. doi:10.1016/j.psep.2019.05.003.
[10] Paddock, M. B. (2019). Microalgae Wastewater Treatment: a Brief History. Preprints, 1(19), 1–25. doi:10.20944/preprints201912.0377.v1.
[11] Ahmad, I., Abdullah, N., Koji, I., Yuzir, A., & Mohamad, S. E. (2021). Potential of microalgae in bioremediation of wastewater. Bulletin of Chemical Reaction Engineering and Catalysis, 16(2), 413–429. doi:10.9767/bcrec.16.2.10616.413-429.
[12] Oruganti, R. K., Katam, K., Show, P. L., Gadhamshetty, V., Upadhyayula, V. K. K., & Bhattacharyya, D. (2022). A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered, 13(4), 10412–10453. doi:10.1080/21655979.2022.2056823.
[13] Oviedo, J. A., Muñoz, R., Donoso-Bravo, A., Bernard, O., Casagli, F., & Jeison, D. (2022). A half-century of research on microalgae-bacteria for wastewater treatment. Algal Research, 67, 102828. doi:10.1016/j.algal.2022.102828.
[14] Abdelfattah, A., Ali, S. S., Ramadan, H., El-Aswar, E. I., Eltawab, R., Ho, S. H., Elsamahy, T., Li, S., El-Sheekh, M. M., Schagerl, M., Kornaros, M., & Sun, J. (2023). Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environmental Science and Ecotechnology, 13, 100205. doi:10.1016/j.ese.2022.100205.
[15] Oberholster, P. J., Schoeman, Y., & Botha, A. M. (2024). Is Africa Ready to Use Phycoremediation to Treat Domestic Wastewater as an Alternative Natural Base Solution? A Case Study. Phycology, 4(1), 153–167. doi:10.3390/phycology4010009.
[16] Kong, W., Kong, J., Feng, S., Yang, T. T., Xu, L., Shen, B., Bi, Y., & Lyu, H. (2024). Cultivation of microalgae–bacteria consortium by waste gas–waste water to achieve CO2 fixation, wastewater purification and bioproducts production. Biotechnology for Biofuels and Bioproducts, 17(1), 26. doi:10.1186/s13068-023-02409-w.
[17] Mahapatra, D. M., Chanakya, H. N., & Ramachandra, T. V. (2013). Treatment efficacy of algae-based sewage treatment plants. Environmental Monitoring and Assessment, 185(9), 7145–7164. doi:10.1007/s10661-013-3090-x.
[18] Tricolici, O., Bumbac, C., & Postolache, C. (2014). Microalgae-bacteria system for biological wastewater treatment. Journal of Environmental Protection and Ecology, 15(1), 268–276.
[19] Khaldi, H., Maatoug, M., Dube, C. S., Ncube, M., Tandlich, R., Heilmeier, H., Laubscher, R. K., & Dellal, A. (2017). Efficiency of wastewater treatment by a mixture of sludge and microalgae. Journal of Fundamental and Applied Sciences, 9(3), 1454. doi:10.4314/jfas.v9i3.13.
[20] Lee, S. A., Lee, N., Oh, H. M., & Ahn, C. Y. (2019). Enhanced and balanced microalgal wastewater treatment (COD, N, and P) by interval inoculation of activated sludge. Journal of Microbiology and Biotechnology, 29(9), 1434–1443. doi:10.4014/jmb.1905.05034.
[21] Moondra, N., Jariwala, N. D., & Christian, R. A. (2020). Sustainable treatment of domestic wastewater through microalgae. International Journal of Phytoremediation, 22(14), 1480–1486. doi:10.1080/15226514.2020.1782829.
[22] Mao, Y., Xiong, R., Gao, X., Jiang, L., Peng, Y., & Xue, Y. (2021). Analysis of the status and improvement of microalgal phosphorus removal from municipal wastewater. Processes, 9(9). doi:10.3390/pr9091486.
[23] Nguyen, L. N., Aditya, L., Vu, H. P., Johir, A. H., Bennar, L., Ralph, P., Hoang, N. B., Zdarta, J., & Nghiem, L. D. (2022). Nutrient Removal by Algae-Based Wastewater Treatment. Current Pollution Reports, 8(4), 369–383. doi:10.1007/s40726-022-00230-x.
[24] Gururani, P., Bhatnagar, P., Kumar, V., Vlaskin, M. S., & Grigorenko, A. V. (2022). Algal Consortiums: A Novel and Integrated Approach for Wastewater Treatment. Water (Switzerland), 14(22), 3784. doi:10.3390/w14223784.
[25] Boonchai, R., Seo, G. T., Park, D. R., & Seong, C. Y. (2012). Microalgae Photobioreactor for Nitrogen and Phosphorus Removal from Wastewater of Sewage Treatment Plant. International Journal of Bioscience, Biochemistry and Bioinformatics, 2(6), 407–410. doi:10.7763/ijbbb.2012.v2.143.
[26] Etisa, D. (2018). Some Application of Microalgae in Sewage Treatment, there Availability and Sampling Protocol up to Conservation with Factor Encounter. Advances in Oceanography & Marine Biology, 1(1), 1–5. doi:10.33552/aomb.2018.01.000502.
[27] Alazaiza, M. Y. D., He, S., Su, D., Abu Amr, S. S., Toh, P. Y., & Bashir, M. J. K. (2023). Sewage Water Treatment Using Chlorella Vulgaris Microalgae for Simultaneous Nutrient Separation and Biomass Production. Separations, 10(4). doi:10.3390/separations10040229.
[28] Roychoudhury, H. (2020). Bioremediation of Wastewater – Effect of Algae in Bioremediation of Nitrate and Phosphate Content in Wastewater. International Journal of High School Research, 2(2), 1–3. doi:10.36838/v2i2.1.
[29] Choi, H. J., & Lee, S. M. (2012). Effects of microalgae on the removal of nutrients from wastewater: Various concentrations of Chlorella vulgaris. Environmental Engineering Research, 17(S1), 3–8. doi:10.4491/eer.2012.17.S1.S3.
[30] Suresh Kumar, K., Dahms, H. U., Won, E. J., Lee, J. S., & Shin, K. H. (2015). Microalgae - A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352. doi:10.1016/j.ecoenv.2014.12.019.
[31] Goswami, R. K., Agrawal, K., Shah, M. P., & Verma, P. (2022). Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Letters in Applied Microbiology, 75(4), 701–717. doi:10.1111/lam.13564.
[32] Spain, O., Plöhn, M., & Funk, C. (2021). The cell wall of green microalgae and its role in heavy metal removal. Physiologia Plantarum, 173(2), 526–535. doi:10.1111/ppl.13405.
[33] Chugh, M., Kumar, L., Shah, M. P., & Bharadvaja, N. (2022). Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus, 7(July), 100129. doi:10.1016/j.nexus.2022.100129.
[34] Zhao, Y., Ge, Z., Lui, H., & Sun, S. (2016). Ability of different microalgae species in synthetic high-strength wastewater treatment and potential lipid production. Journal of Chemical Technology and Biotechnology, 91(11), 2888–2895. doi:10.1002/jctb.4905.
[35] Encarnação, T., Palito, C., Pais, A. A. C. C., Valente, A. J. M., & Burrows, H. D. (2020). Removal of pharmaceuticals from water by free and imobilised microalgae. Molecules, 25(16), 3639. doi:10.3390/molecules25163639.
[36] Torres-Franco, A., Passos, F., Figueredo, C., Mota, C., & Muñoz, R. (2021). Current advances in microalgae-based treatment of high-strength wastewaters: challenges and opportunities to enhance wastewater treatment performance. Reviews in Environmental Science and Biotechnology, 20(1), 209–235. doi:10.1007/s11157-020-09556-8.
[37] Hwang, J. H., Church, J., Lee, S. J., Park, J., & Lee, W. H. (2016). Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation. Environmental Engineering Science, 33(11), 882–897. doi:10.1089/ees.2016.0132.
[38] Uggetti, E., GarcÃa, J., Ãlvarez, J. A., & GarcÃa-Galán, M. J. (2018). Start-up of a microalgae-based treatment system within the biorefinery concept: From wastewater to bioproducts. Water Science and Technology, 78(1), 114–124. doi:10.2166/wst.2018.195.
[39] Marella, T. K., López-Pacheco, I. Y., Parra-SaldÃvar, R., Dixit, S., & Tiwari, A. (2020). Wealth from waste: Diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Science of the Total Environment, 724. doi:10.1016/j.scitotenv.2020.137960.
[40] Al-Jabri, H., Das, P., Khan, S., Thaher, M., & Abdulquadir, M. (2021). Treatment of wastewaters by microalgae and the potential applications of the produced biomass—a review. Water (Switzerland), 13(1), 27. doi:10.3390/w13010027.
[41] Khan, S., Das, P., Abdul Quadir, M., Thaher, M. I., Mahata, C., Sayadi, S., & Al-Jabri, H. (2023). Microalgal Feedstock for Biofuel Production: Recent Advances, Challenges, and Future Perspective. Fermentation, 9(3), 281. doi:10.3390/fermentation9030281.
[42] Johnson, D. B., Schideman, L. C., Canam, T., & Hudson, R. J. M. (2018). Pilot-scale demonstration of efficient ammonia removal from a high-strength municipal wastewater treatment side stream by algal-bacterial biofilms affixed to rotating contactors. Algal Research, 34, 143–153. doi:10.1016/j.algal.2018.07.009.
[43] Rosso, D., Larson, L. E., & Stenstrom, M. K. (2008). Aeration of large-scale municipal wastewater treatment plants: State of the art. Water Science and Technology, 57(7), 973–978. doi:10.2166/wst.2008.218.
[44] American Public Health Association (APHA). (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association (APHA), Washington, United States.
[45] Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F. X., & van Langenhove, H. (2010). Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions. Trends in Biotechnology, 28(7), 371–380. doi:10.1016/j.tibtech.2010.04.004.
[46] Pawlita-Posmyk, M., Wzorek, M., & Płaczek, M. (2018). The influence of temperature on algal biomass growth for biogas production. MATEC Web of Conferences, 240, 4008. doi:10.1051/matecconf/201824004008.
[47] Kuenen, J. G., Jørgensen, B. B., & Revsbech, N. P. (1986). Oxygen microprofiles of trickling filter biofilms. Water Research, 20(12), 1589–1598. doi:10.1016/0043-1354(86)90125-9.
[48] Su, Y., Mennerich, A., & Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research, 45(11), 3351–3358. doi:10.1016/j.watres.2011.03.046.
[49] Peng, J., Kumar, K., Gross, M., Kunetz, T., & Wen, Z. (2020). Removal of total dissolved solids from wastewater using a revolving algal biofilm reactor. Water Environment Research, 92(5), 766–778. doi:10.1002/wer.1273.
[50] Ghalhari, M. A., Mafigholami, R., Takdastan, A., & Khoshmaneshzadeh, B. (2022). Optimization of the biological salt removal process from artificial industrial wastewater with high TDS by Spirulina microalga using the response surface method. Water Science and Technology, 86(5), 1168–1180. doi:10.2166/wst.2022.270.
[51] Hammouda, O., Gaber, A., & Abdel-Raouf, N. (1995). Microalgae and wastewater treatment. Ecotoxicology and Environmental Safety, 31(3), 205–210. doi:10.1006/eesa.1995.1064.
[52] Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28(1), 64–70. doi:10.1016/j.ecoleng.2006.04.003.
[53] Fard, F. A., Yengejeh, R. J., & Ghaeni, M. (2021). Efficiency of microalgae Scenedesmus in the removal of nitrogen from municipal wastewaters. Iranian Journal of Toxicology, 13(2), 1–6. doi:10.32598/IJT.13.2.483.2.
Downloads
Published
2024-11-01
Issue
Section
Research Articles
License
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
