Frictional Axial Resistance of Clamped Split Pocket Mechanism Steel Structural Joint: An Experimental Study
Abstract
Doi: 10.28991/CEJ-2024-010-09-07
Full Text: PDF
Keywords
References
Librian, V., Ramdhan, M., Nugraha, A. D., Mukti, M. M., Syuhada, S., Lühr, B. G., Widiyantoro, S., Mursitantyo, A., Anggraini, A., Zulfakriza, Z., Muttaqy, F., & Mi’rojul Husni, Y. (2024). Detailed seismic structure beneath the earthquake zone of Yogyakarta 2006 (Mw ∼6.4), Indonesia, from local earthquake tomography. Physics of the Earth and Planetary Interiors, 351, 107170. doi:10.1016/j.pepi.2024.107170.
Mason, H. B., Montgomery, J., Gallant, A. P., Hutabarat, D., Reed, A. N., Wartman, J., Irsyam, M., Simatupang, P. T., Alatas, I. M., Prakoso, W. A., Djarwadi, D., Hanifa, R., Rahardjo, P., Faizal, L., Harnanto, D. S., Kawanda, A., Himawan, A., & Yasin, W. (2021). East Palu Valley flowslides induced by the 2018 MW 7.5 Palu-Donggala earthquake. Geomorphology, 373. doi:10.1016/j.geomorph.2020.107482.
Yulianto, E., Yusanta, D. A., Utari, P., & Satyawan, I. A. (2021). Community adaptation and action during the emergency response phase: Case study of natural disasters in Palu, Indonesia. International Journal of Disaster Risk Reduction, 65(September), 102557. doi:10.1016/j.ijdrr.2021.102557.
Central Sulawesi Provincial Government. (2019). Finalization Report of Data and Information on Earthquake, Tsunami and Liquefaction Disasters PADAGIMO in Central Sulawesi as of January 30, 2019. Central Sulawesi Provincial Government, Palu, Indonesia. (In Indonesian).
Setyonugroho, G. A., & Maki, N. (2024). Policy implementation model review of the post-disaster housing reconstruction in Indonesia case study: Aceh, Yogyakarta, and Lombok. International Journal of Disaster Risk Reduction, 100, 1–18. doi:10.1016/j.ijdrr.2023.104181.
Pribadi, K. S., Abduh, M., Wirahadikusumah, R. D., Hanifa, N. R., Irsyam, M., Kusumaningrum, P., & Puri, E. (2021). Learning from past earthquake disasters: The need for knowledge management system to enhance infrastructure resilience in Indonesia. International Journal of Disaster Risk Reduction, 64, 102424. doi:10.1016/j.ijdrr.2021.102424.
Sutrisno, W., Satyarno, I., Awaludin, A., Saputra, A., & Setiawan, A.F. (2022). Seismic Performance of Instant Steel Frame House for Post Earthquake Reconstruction. Proceedings of the 5th International Conference on Sustainable Civil Engineering Structures and Construction Materials. SCESCM 2020, Lecture Notes in Civil Engineering, 215, Springer, Singapore. doi:10.1007/978-981-16-7924-7_6.
Zhang, Z., Li, D., Wang, H., Li, S., Qian, H., Bi, Y., Wang, G., Jin, X., & Fan, F. (2024). Static and Seismic Experimental Study of Novel Prefabricated Beam-Column Joints with Elongated-Hole Brackets. International Journal of Steel Structures, 24(1), 118–131. doi:10.1007/s13296-023-00804-5.
Wang, H., Zhang, B., Qian, H., Liu, J., An, B., & Fan, F. (2021). Experimental and numerical studies of a new prefabricated steel frame joint without field-welding: Design and static performance. Thin-Walled Structures, 159, 107271. doi:10.1016/j.tws.2020.107271.
Lokesh Kumar, P. J., Vasanthe Roy, J., & Sevvel, P. (2023). An investigation on the influence of torque and R-ratio on the fatigue life of double-lap bolted joint using FEM. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.05.342.
Mahmoudi, M., Kosari, M., Lorestani, M., & Jalili Sadr Abad, M. (2020). Effect of contact surface type on the slip resistance in bolted connections. Journal of Constructional Steel Research, 166, 1–12. doi:10.1016/j.jcsr.2020.105943.
Deng, E. F., Zong, L., Ding, Y., Zhang, Z., Zhang, J. F., Shi, F. W., Cai, L. M., & Gao, S. C. (2020). Seismic performance of mid-to-high rise modular steel construction - A critical review. Thin-Walled Structures, 155, 106924. doi:10.1016/j.tws.2020.106924.
Qin, J., & Tan, P. (2022). Design method of innovative box connections for modular steel constructions. Journal of Building Engineering, 57, 104820. doi:10.1016/j.jobe.2022.104820.
Bazarchi, E., Davaran, A., Lamarche, C. P., Roy, N., & Parent, S. (2023). Experimental and numerical investigation of a novel vertically unconstrained steel inter-modular connection. Thin-Walled Structures, 183, 110364. doi:10.1016/j.tws.2022.110364.
Fajar, A.S., Saputra, A., Satyarno, I., & Himawan, L. (2022). Investigation of Fast Connection (Clamped Pocket Mechanics) for Modular Instant Steel House with Finite Element Analysis: Back to Build Post-disaster. Proceedings of the 5th International Conference on Sustainable Civil Engineering Structures and Construction Materials, SCESCM 2020, Lecture Notes in Civil Engineering, 215, Springer, Singapore. doi:10.1007/978-981-16-7924-7_50.
Gunawardena, T. (2016). Behaviour of prefabricated modular buildings subjected to lateral loads. Ph.D. Thesis, The University of Melbourne, Melbourne, Australia.
Maiorana, E., Zampieri, P., & Pellegrino, C. (2018). Experimental tests on slip factor in friction joints: Comparison between european and American standards. Frattura Ed Integrita Strutturale, 12(43), 205–217. doi:10.3221/IGF-ESIS.43.16.
Cruz, A., Simões, R., & Alves, R. (2012). Slip factor in slip resistant joints with high strength steel. Journal of Constructional Steel Research, 70, 280–288. doi:10.1016/j.jcsr.2011.11.001.
Lacey, A. W., Chen, W., Hao, H., & Bi, K. (2019). Experimental and numerical study of the slip factor for G350-steel bolted connections. Journal of Constructional Steel Research, 158, 576–590. doi:10.1016/j.jcsr.2019.04.012.
Heistermann, C., Veljkovic, M., Simões, R., Rebelo, C., & Simões da Silva, L. (2013). Design of slip resistant lap joints with long open slotted holes. Journal of Constructional Steel Research, 82, 223–233. doi:10.1016/j.jcsr.2012.11.012.
Wang, Y. B., Wang, Y. Z., Chen, K., & Li, G. Q. (2020). Slip factor between shot blasted mild steel and high strength steel surfaces. Journal of Constructional Steel Research, 168, 105969. doi:10.1016/j.jcsr.2020.105969.
Lacey, A. W., Chen, W., Hao, H., & Bi, K. (2018). Structural response of modular buildings – An overview. Journal of Building Engineering, 16, 45–56. doi:10.1016/j.jobe.2017.12.008.
Collini, L., Garziera, R., Corvi, A., & Cantarelli, G. (2024). Slip strength of COR-TEN and Zn-coated steel preloaded bolted joints. Results in Engineering, 22, 102009. doi:10.1016/j.rineng.2024.102009.
Patne, S., Karale, A., Mohankumar, V., & Rane, S. (2023). Bolt pre-load CAE analysis and validation: FEA simulation of hex bolt tightening torque for IDU assembly of 2-wheeler in MSC Nastran and practical validation. Materials Today: Proceedings, 72, 1925–1928. doi:10.1016/j.matpr.2022.10.155.
Annan, C. D., & Chiza, A. (2013). Characterization of slip resistance of high strength bolted connections with zinc-based metallized faying surfaces. Engineering Structures, 56, 2187–2196. doi:10.1016/j.engstruct.2013.08.040.
SNI 8389:2017. (2017). Metal Tensile Test Method. Badan Standardisasi Nasional, Jakarta, Indonesia. (in Indonesian).
Link, R. (1991). An Introduction to the Design and Behavior of Bolted Joints. Journal of Testing and Evaluation, 19(5), 417–418. doi:10.1520/jte12600j.
Budynas, R. G., & Nisbett, J. K. (2011). Shigley's mechanical engineering design. McGraw-Hill, New York, United States.
DOI: 10.28991/CEJ-2024-010-09-07
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Angga Fajar Setiawan
This work is licensed under a Creative Commons Attribution 4.0 International License.