Assessing Geospatial Accuracy in Mapping Applications: A Focus on Google Earth

Thaar Alqahtani

Abstract


Google Earth, among other online mapping platforms, offers an interactive mapping platform that has become indispensable for academic and research applications. It serves as a primary reference and a foundational tool for map creation, providing open-source, cost-free imagery that meets the user needs of the mapping community. As a contemporary repository of high-resolution images of Earth's landmass, Google Earth has vast potential for scientific exploration and remains an underexploited resource. Its rapid expansion and consistent reliability make it a favored source for mapping and routing tasks. However, this research underscores the crucial aspect of Google Earth's positional accuracy, which is at the heart of this study. A comparative analysis between the positional accuracy of Google Earth and traditional ground surveying maps was conducted. The Wilcoxon rank test and quantitative methods were used to evaluate coordinate discrepancies, revealing significant discrepancies between the two datasets. This study aims to provide a rigorous assessment of Google Earth's utility and accuracy in scientific and academic contexts, emphasizing its role and reliability as a critical resource for researchers and practitioners in the field of mapping. The results revealed displacement changes in both the northing and the easting coordinates. For the northing coordinates, the displacement increases when moving eastward and decreases when moving westward. For the easting coordinates, the displacement increases when moving northward and decreases when moving southward. This pattern highlights spatial discrepancies and the varying impact of location on the dataset's accuracy, emphasizing the need for targeted corrections to enhance data accuracy. These key findings provide valuable insights that could significantly contribute to optimizing mapping practices and efficiently exploiting this vast, yet underexplored, digital resource.

 

Doi: 10.28991/CEJ-2024-010-08-012

Full Text: PDF


Keywords


Google Earth; Mapping; Geospatial Accuracy; Vector Length Error; Change in Coordinates.

References


Bartłomiej, O., Jędrzej, M., & Janusz, Ć. (2017). Decoding of GPS data for single point positioning computation by using python programming language. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(22), 193–202. doi:10.5593/sgem2017/22/S09.024.

Prasai, R., Schwertner, T. W., Mainali, K., Mathewson, H., Kafley, H., Thapa, S., Adhikari, D., Medley, P., & Drake, J. (2021). Application of Google earth engine python API and NAIP imagery for land use and land cover classification: A case study in Florida, USA. Ecological Informatics, 66. doi:10.1016/j.ecoinf.2021.101474.

Anderson, K., Ryan, B., Sonntag, W., Kavvada, A., & Friedl, L. (2017). Earth observation in service of the 2030 Agenda for Sustainable Development. Geo-Spatial Information Science, 20(2), 77–96. doi:10.1080/10095020.2017.1333230.

Yu, L., & Gong, P. (2012). Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives. International Journal of Remote Sensing, 33(12), 3966–3986. doi:10.1080/01431161.2011.636081.

Giuliani, G., Mazzetti, P., Santoro, M., Nativi, S., Bemmelen, J. Van, Colangeli, G., & Lehmann, A. (2020). Knowledge Generation Using Satellite Earth Observations to Support sustainable Development Goals (SDG): A Use Case on Land Degradation. International Journal of Applied Earth Observation and Geoinformation, 88. doi:10.1016/j.jag.2020.102068.

Zuliani, C., Santoro, V., Nugnes, M., & Colombo, C. (2021). Social Benefits Assessment of Earth Observation Missions Through the SDG2030. International Astronautical Congress: IAC Proceedings. 25-29 October, 2021, Dubai, United Arab Emirates.

Nwilo, P. C., Okolie, C. J., Onyegbula, J. C., Arungwa, I. D., Ayoade, O. Q., Daramola, O. E., Orji, M. J., Maduako, I. D., & Uyo, I. I. (2022). Positional accuracy assessment of historical Google Earth imagery in Lagos State, Nigeria. Applied Geomatics, 14(3), 545–568. doi:10.1007/s12518-022-00449-9.

Sheppard, S. R. J., & Cizek, P. (2009). The ethics of Google Earth: Crossing thresholds from spatial data to landscape visualisation. Journal of Environmental Management, 90(6), 2102–2117. doi:10.1016/j.jenvman.2007.09.012.

Clarke, P., Ailshire, J., Melendez, R., Bader, M., & Morenoff, J. (2010). Using Google Earth to conduct a neighborhood audit: Reliability of a virtual audit instrument. Health & Place, 16(6), 1224–1229. doi:10.1016/j.healthplace.2010.08.007.

Sharma, A., Wang, J., & Lennartson, E. M. (2017). Intercomparison of MODIS and VIIRS fire products in Khanty-Mansiysk Russia: Implications for characterizing gas flaring from space. Atmosphere, 8(6), 95. doi:10.3390/atmos8060095.

Du, H., Cai, W., Xu, Y., Wang, Z., Wang, Y., & Cai, Y. (2017). Quantifying the cool island effects of urban green spaces using remote sensing Data. Urban Forestry & Urban Greening, 27, 24–31. doi:10.1016/j.ufug.2017.06.008.

Kakooei, M., & Baleghi, Y. (2020). A two-level fusion for building irregularity detection in post-disaster VHR oblique images. Earth Science Informatics, 13(2), 459–477. doi:10.1007/s12145-020-00449-6.

Xiang, X., & Liu, Y. (2017). Understanding ‘change’ through spatial thinking using Google Earth in secondary geography. Journal of Computer Assisted Learning, 33(1), 65–78. doi:10.1111/jcal.12166.

Liang, J., Gong, J., & Li, W. (2018). Applications and impacts of Google Earth: A decadal review (2006–2016). ISPRS Journal of Photogrammetry and Remote Sensing, 146, 91–107. doi:10.1016/j.isprsjprs.2018.08.019.

Harris, L., Nel, R., Holness, S., Sink, K., & Schoeman, D. (2014). Setting conservation targets for sandy beach ecosystems. Estuarine, Coastal and Shelf Science, 150, 45–57. doi:10.1016/j.ecss.2013.05.016.

Strom, T. E. (2011). Space, Cyberspace and Interface: The Trouble with Google Maps. M/C Journal, 14(3), 370. doi:10.5204/mcj.370.

Jacobson, A., Dhanota, J., Godfrey, J., Jacobson, H., Rossman, Z., Stanish, A., Walker, H., & Riggio, J. (2015). A novel approach to mapping land conversion using Google Earth with an application to East Africa. Environmental Modelling & Software, 72, 1–9. doi:10.1016/j.envsoft.2015.06.011.

Ngom Vougat, R. R. B., Chouto, S., Aoudou Doua, S., Garabed, R., Zoli Pagnah, A., & Gonne, B. (2019). Using Google EarthTM and Geographical Information System data as method to delineate sample domains for an urban household surveys: The case of Maroua (Far North Region-Cameroon). International Journal of Health Geographics, 18(1), 1-12. doi:10.1186/s12942-019-0186-8.

Malarvizhi, K., Kumar, S. V., & Porchelvan, P. (2016). Use of High Resolution Google Earth Satellite Imagery in Landuse Map Preparation for Urban Related Applications. Procedia Technology, 24, 1835–1842. doi:10.1016/j.protcy.2016.05.231.

Langenkamp, J. P., & Rienow, A. (2023). Exploring the Use of Orthophotos in Google Earth Engine for Very High-Resolution Mapping of Impervious Surfaces: A Data Fusion Approach in Wuppertal, Germany. Remote Sensing, 15(7), 1818. doi:10.3390/rs15071818.

Fariz, T. R., Suhardono, S., Sultan, H., Rahmawati, D., & Arifah, E. Z. (2022). Land Cover Mapping in Lake Rawa Pening Using Landsat 9 Imagery and Google Earth Engine. Journal of Environmental and Science Education, 2(1), 1–6. doi:10.15294/jese.v2i1.55851.

Quijano, M. G., De La Cruz, A., Mielewczyk, M., & Cerra, D. (2007). Assessing refugee movement during the Israel - Lebanon crisis of 2006 using DMSP imagery. In American Society for Photogrammetry and Remote Sensing - 28th Canadian Symposium on Remote Sensing and ASPRS Fall Specialty Conference 2007, 28 October-1 November, Ottawa, Canada.

Hanberry, B. B. (2020). Classifying large wildfires in the United States by land cover. Remote Sensing, 12(18), 2966. doi:10.3390/RS12182966.

Inman, V. L., & Lyons, M. B. (2020). Automated inundation mapping over large areas using Landsat data and google earth engine. Remote Sensing, 12(8), 1348. doi:10.3390/RS12081348.

John, J., Chithra, N. R., & Thampi, S. G. (2019). Prediction of land use/cover change in the Bharathapuzha river basin, India using geospatial techniques. Environmental Monitoring and Assessment, 191(6), 354. doi:10.1007/s10661-019-7482-4.

Shekhar, S., Feiner, S., & Aref, W. G. (2015). From GPS and virtual globes to spatial computing - 2020. GeoInformatica, 19(4), 799–832. doi:10.1007/s10707-015-0235-9.

Brovelli, M. A., & Zamboni, G. (2012). Virtual globes for 4D environmental analysis. Applied Geomatics, 4(3), 163–172. doi:10.1007/s12518-012-0091-3.

Hung, K. C., Kalantari, M., & Rajabifard, A. (2016). Methods for assessing the credibility of volunteered geographic information in flood response: A case study in Brisbane, Australia. Applied Geography, 68, 37–47. doi:10.1016/j.apgeog.2016.01.005.

Kitalika, A., Machunda, R., Komakech, H., & Njau, K. (2018). Land-Use and Land Cover Changes on the Slopes of Mount Meru-Tanzania. Current World Environment, 13(3), 331–352. doi:10.12944/cwe.13.3.07.

Leroux, C., Jones, H., Pichon, L., Guillaume, S., Lamour, J., Taylor, J., Naud, O., Crestey, T., Lablee, J.-L., & Tisseyre, B. (2018). GeoFIS: An Open Source, Decision-Support Tool for Precision Agriculture Data. Agriculture, 8(6), 73. doi:10.3390/agriculture8060073.

Yazirlıoğlu, L. (2021). Sustainable Design Considerations for Emotional Durability and Product Longevity Through Product Care Activities by Repair Enthusiasts. Master Thesis, Middle East Technical University, Ankara, Turkey.

Midekisa, A., Holl, F., Savory, D. J., Andrade-Pacheco, R., Gething, P. W., Bennett, A., & Sturrock, H. J. W. (2017). Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PLoS ONE, 12(9), 0184926. doi:10.1371/journal.pone.0184926.

Pulighe, G., Baiocchi, V., & Lupia, F. (2016). Horizontal accuracy assessment of very high-resolution Google Earth images in the city of Rome, Italy. International Journal of Digital Earth, 9(4), 342–362. doi:10.1080/17538947.2015.1031716.

Paredes-Hernández, C. U., Salinas-Castillo, W. E., Guevara-Cortina, F., & Martínez-Becerra, X. (2013). Horizontal positional accuracy of Google Earth’s imagery over rural areas: a study case in Tamaulipas, Mexico. Boletim de Ciências Geodésicas, 19(4), 588–601. doi:10.1590/s1982-21702013000400005.

Wang, Y., Zou, Y., Henrickson, K., Wang, Y., Tang, J., & Park, B. J. (2017). Google Earth elevation data extraction and accuracy assessment for transportation applications. PLoS ONE, 12(4). doi:10.1371/journal.pone.0175756.

Rizeei, H. M., & Pradhan, B. (2019). Urban mapping accuracy enhancement in high-rise built-up areas deployed by 3d-orthorectification correction from worldview-3 and lidar imageries. Remote Sensing, 11(6), 692. doi:10.3390/rs11060692.

Pragada, A., & Rajan, K. S. (2023). Does Google Earth CRS induce bias with increasing UTM zone number? 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS), Hyderabad, India. doi:10.1109/migars57353.2023.10064588.

Craglia, M., Goodchild, M. F., Annoni, A., Camara, G., Gould, M., Kuhn, W., Mark, D., Masser, I., Maguire, D., Liang, S., & Parsons, E. (2008). A position paper from the Vespucci Initiative for the Advancement of Geographic Information Science. International Journal of Spatial Data Infrastructures Research, 3, 146–167. doi:10.2902/1725-0463.2008.03.art9.

Salinas-Castillo, W. E., & Paredes-Hernández, C. U. (2014). Horizontal and vertical accuracy of Google Earth®: comment on “Positional accuracy of the Google Earth terrain model derived from stratigraphic unconformities in the Big Bend region, Texas, USA” by S.C. Benker, R.P. Langford and T.L. Pavlis. Geocarto International, 29(6), 625–627. doi:10.1080/10106049.2013.821176.

Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., & Turner, I. L. (2019). CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environmental Modelling and Software, 122. doi:10.1016/j.envsoft.2019.104528.

Bajaj, M., Sasaki, N., Tsusaka, T. W., Venkatappa, M., Abe, I., & Shrestha, R. P. (2024). Assessing changes in mangrove forest cover and carbon stocks in the Lower Mekong Region using Google Earth Engine. Innovation and Green Development, 3(3), 100140. doi:10.1016/j.igd.2024.100140.

Zurqani, H. A. (2024). High-resolution forest canopy cover estimation in ecodiverse landscape using machine learning and Google Earth Engine: Validity and reliability assessment. Remote Sensing Applications: Society and Environment, 33. doi:10.1016/j.rsase.2023.101095.

Ganjirad, M., & Bagheri, H. (2024). Google Earth Engine-based mapping of land use and land cover for weather forecast models using Landsat 8 imagery. Ecological Informatics, 80. doi:10.1016/j.ecoinf.2024.102498.

Habibie, M. I., Ramadhan, Nurda, N., Sencaki, D. B., Putra, P. K., Prayogi, H., Agustan, Sutrisno, D., & Bintoro, O. B. (2024). The development land utilization and cover of the Jambi district are examined and forecasted using Google Earth Engine and CNN1D. Remote Sensing Applications: Society and Environment, 34. doi:10.1016/j.rsase.2024.101175.

Merchant, M., Brisco, B., Mahdianpari, M., Bourgeau-Chavez, L., Murnaghan, K., DeVries, B., & Berg, A. (2023). Leveraging google earth engine cloud computing for large-scale arctic wetland mapping. International Journal of Applied Earth Observation and Geoinformation, 125. doi:10.1016/j.jag.2023.103589.

Gokool, S., Mahomed, M., Brewer, K., Naiken, V., Clulow, A., Sibanda, M., & Mabhaudhi, T. (2024). Crop mapping in smallholder farms using unmanned aerial vehicle imagery and geospatial cloud computing infrastructure. Heliyon, 10(5), e26913. doi:10.1016/j.heliyon.2024.e26913.

Luo, L., Wang, X., Guo, H., Lasaponara, R., Shi, P., Bachagha, N., Li, L., Yao, Y., Masini, N., Chen, F., Ji, W., Cao, H., Li, C., & Hu, N. (2018). Google earth as a powerful tool for archaeological and cultural heritage applications: A review. Remote Sensing, 10(10), 1558. doi:10.3390/rs10101558.

Ubukawa, T. (2013). An evaluation of the horizontal positional accuracy of Google and Bing satellite imagery and three roads data sets based on high resolution satellite imagery. Center for International Earth Science Information Network (CIESIN), The Earth Institute, Columbia University, New York, United States.

Lesiv, M., See, L., Bayas, J. C. L., Sturn, T., Schepaschenko, D., Karner, M., Moorthy, I., McCallum, I., & Fritz, S. (2018). Characterizing the spatial and temporal availability of very high resolution satellite imagery in Google Earth and Microsoft Bing Maps as a source of reference data. Land, 7(4), 118. doi:10.3390/land7040118.

Buka, I., Maruziva, R., & Nenhowe, P. (2015). A comparison of Google Earth extracted points with GPS surveyed points. Ethiopian Journal of Environmental Studies and Management, 8(5), 484. doi:10.4314/ejesm.v8i5.2.

Vanderhoof, M., Brunner, N., Beal, Y.-J., & Hawbaker, T. (2017). Evaluation of the U.S. Geological Survey Landsat Burned Area Essential Climate Variable across the Conterminous U.S. Using Commercial High-Resolution Imagery. Remote Sensing, 9(7), 743. doi:10.3390/rs9070743.

Goudarzi, M. A., & Landry, R. J. (2017). Assessing horizontal positional accuracy of Google Earth imagery in the city of Montreal, Canada. Geodesy and Cartography, 43(2), 56–65. doi:10.3846/20296991.2017.1330767.

Bärgman, J., Smith, K., & Werneke, J. (2015). Quantifying drivers’ comfort-zone and dread-zone boundaries in left turn across path/opposite direction (LTAP/OD) scenarios. Transportation Research Part F: Traffic Psychology and Behaviour, 35, 170–184. doi:10.1016/j.trf.2015.10.003.

Elwood, S., Goodchild, M. F., & Sui, D. Z. (2012). Researching Volunteered Geographic Information: Spatial Data, Geographic Research, and New Social Practice. Annals of the Association of American Geographers, 102(3), 571–590. doi:10.1080/00045608.2011.595657.

Frey, B. B. (2023). Wilcoxon Signed Ranks Test. In There’s a Stat for That! What to Do & When to Do It. Sage Publications, Thousand Oaks, United States doi:10.4135/9781071909775.n17.

Li, S., Dragicevic, S., Castro, F. A., Sester, M., Winter, S., Coltekin, A., Pettit, C., Jiang, B., Haworth, J., Stein, A., & Cheng, T. (2016). Geospatial big data handling theory and methods: A review and research challenges. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 119–133. doi:10.1016/j.isprsjprs.2015.10.012.

Silva, D. S., & Holanda, M. (2022). Applications of geospatial big data in the Internet of Things. Transactions in GIS, 26(1), 41-71. doi:10.1111/tgis.12846.

Escamilla Molgora, J. M., Sedda, L., & Atkinson, P. M. (2020). Biospytial: Spatial graph-based computing for ecological Big Data. GigaScience, 9(5), 1-25. doi:10.1093/gigascience/giaa039.

Goodchild, M. F., & Li, L. (2012). Assuring the quality of volunteered geographic information. Spatial Statistics, 1, 110–120. doi:10.1016/j.spasta.2012.03.002.

Li, D., Zhang, J., & Wu, H. (2012). Spatial data quality and beyond. International Journal of Geographical Information Science, 26(12), 2277–2290. doi:10.1080/13658816.2012.719625.

West Meiers, M. (2022). The Independent Evaluation Group (IEG) of the World Bank Group: Influences on Evaluation Structures and Practices Globally and in the Americas. The Institutionalisation of Evaluation in the Americas. Palgrave Macmillan, Cham, Switzerland. doi:10.1007/978-3-030-81139-6_15.

Li, W., & Hsu, C. Y. (2022). GeoAI for Large-Scale Image Analysis and Machine Vision: Recent Progress of Artificial Intelligence in Geography. ISPRS International Journal of Geo-Information, 11(7), 385. doi:10.3390/ijgi11070385.

Fisher, P. F., & Tate, N. J. (2006). Causes and consequences of error in digital elevation models. Progress in Physical Geography, 30(4), 467–489. doi:10.1191/0309133306pp492ra.

Li, J., Lewis, J., Rowland, J., Tappan, G., & Tieszen, L. L. (2004). Evaluation of land performance in Senegal using multi-temporal NDVI and rainfall series. Journal of Arid Environments, 59(3), 463–480. doi:10.1016/j.jaridenv.2004.03.019.

Duckham, M. (2013). Decentralized Spatial Computing. Springer, Berlin, Germany. doi:10.1007/978-3-642-30853-6.

EPSG:32638 (2024). WGS 84/ UTM zone 38N. Spatial Reference. Available online: https://spatialreference.org/ref/epsg/32638/ (accessed on July 2024).

Holoway, G., Lacombe, D., & LeSage, J. P. (2007). Spatial econometric issues for bio-economic and land-use modelling. Journal of Agricultural Economics, 58(3), 549–588. doi:10.1111/j.1477-9552.2007.00127.x.

Endricks, N. P. H., Smith, A., & Sumner, D. A. (2014). Crop supply dynamics and the illusion of partial adjustment. American Journal of Agricultural Economics, 96(5), 1469–1491. doi:10.1093/ajae/aau024.

Sohl, T. L., Sayler, K. L., Drummond, M. A., & Loveland, T. R. (2007). The fore-sce model: A practical approach for projecting land cover change using scenario-based modeling. Journal of Land Use Science, 2(2), 103–126. doi:10.1080/17474230701218202.

Hinton, J. W., Hurst, J. E., Kramer, D. W., Stickles, J. H., & Frair, J. L. (2022). A model-based estimate of winter distribution and abundance of white-tailed deer in the Adirondack Park. PLOS ONE, 17(8), e0273707. doi:10.1371/journal.pone.0273707.

Nelson, G. C., & Hellerstein, D. (1997). Do Roads Cause Deforestation? Using Satellite Images in Econometric Analysis of Land Use. American Journal of Agricultural Economics, 79(1), 80–88. doi:10.2307/1243944.

Lawler, J. J., Lewis, D. J., Nelson, E., Plantinga, A. J., Polasky, S., Withey, J. C., Helmers, D. P., Martinuzzi, S., Penningtonh, D., & Radeloff, V. C. (2014). Projected land-use change impacts on ecosystem services in the United States. Proceedings of the National Academy of Sciences of the United States of America, 111(20), 7492–7497. doi:10.1073/pnas.1405557111.

Lark, T. J., Mueller, R. M., Johnson, D. M., & Gibbs, H. K. (2017). Measuring land-use and land-cover change using the U.S. department of agriculture’s cropland data layer: Cautions and recommendations. International Journal of Applied Earth Observation and Geoinformation, 62, 224–235. doi:10.1016/j.jag.2017.06.007.

Fritz, S., See, L., & Rembold, F. (2010). Comparison of global and regional land cover maps with statistical information for the agricultural domain in Africa. International Journal of Remote Sensing, 31(9), 2237–2256. doi:10.1080/01431160902946598.

Xu, Y., Yu, L., Feng, D., Peng, D., Li, C., Huang, X., Lu, H., & Gong, P. (2019). Comparisons of three recent moderate resolution African land cover datasets: CGLS-LC100, ESA-S2-LC20, and FROM-GLC-Africa30. International Journal of Remote Sensing, 40(16), 6185–6202. doi:10.1080/01431161.2019.1587207.

Vancutsem, C., Marinho, E., Kayitakire, F., See, L., & Fritz, S. (2013). Harmonizing and combining existing land cover/land use datasets for cropland area monitoring at the African continental scale. Remote Sensing, 5(1), 19–41. doi:10.3390/rs5010019.

Hua-Mei Chen, Varshney, P. K., & Arora, M. K. (2003). Performance of mutual information similarity measure for registration of multitemporal remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 41(11), 2445–2454. doi:10.1109/tgrs.2003.817664.

Townshend, J. R. G., Gurney, C., McManus, J., & Justice, C. O. (1992). The Impact of Misregistration on Change Detection. IEEE Transactions on Geoscience and Remote Sensing, 30(5), 1054–1060. doi:10.1109/36.175340.

Carmel, Y., Dean, D. J., & Flather, C. H. (2001). Combining location and classification error sources for estimating multi-temporal database accuracy. Photogrammetric Engineering and Remote Sensing, 67(7), 865–872.

Carmel, Y. (2004). Controlling data uncertainty via aggregation in remotely sensed data. IEEE Geoscience and Remote Sensing Letters, 1(2), 39–41. doi:10.1109/LGRS.2004.823453.

Zhang, M., Lin, H., Zeng, S., Li, J., Shi, J., & Wang, G. (2013). Impacts of plot location errors on accuracy of mapping and scaling up aboveground forest carbon using sample plot and Landsat tm data. IEEE Geoscience and Remote Sensing Letters, 10(6), 1483–1487. doi:10.1109/LGRS.2013.2260719.

Jitkajornwanich, K., Vateekul, P., Panboonyuen, T., Lawawirojwong, S., & Srisonphan, S. (2017). Road map extraction from satellite imagery using connected component analysis and landscape metrics. 2017 IEEE International Conference on Big Data (Big Data), Boston, United States. doi:10.1109/bigdata.2017.8258330.

Rogan, J., & Miller, J. (2006). Integrating GIS and Remotely Sensed Data for Mapping Forest Disturbance and Change. Understanding Forest Disturbance and Spatial Pattern, 133–171. doi:10.1201/9781420005189.ch6.

Pascual, M. S. (2022). GIS Data: A Look at Accuracy, Precision, and Types of Errors, GIS Lounge. Geographyrealm, Santa Clara, United States. Available online: https://www.gislounge.com/gis-data-a-look-at-accuracy-precision-and-types-of-errors/ (accessed on July 2024).

Wetterhall, F., Winsemius, H. C., Dutra, E., Werner, M., & Pappenberger, E. (2015). Seasonal predictions of agro-meteorological drought indicators for the Limpopo basin. Hydrology and Earth System Sciences, 19(6), 2577–2586. doi:10.5194/hess-19-2577-2015.

Atlan. (2023). Data Accuracy in 2024: A Roadmap for Data Quality. Atlan Pte. Ltd, Singapore. Available online: https://atlan.com/data-accuracy-101-guide/ (accessed on May 2024).

Sattineni, A., & Bradford, R. H. (2011). Estimating with BIM: A survey of US construction companies. Proceedings of the 28th International Symposium on Automation and Robotics in Construction, ISARC 2011, 564–569. doi:10.22260/isarc2011/0103.

Li, Z., Zhu, C., & Gold, C. (2004). Digital Terrain Modeling. CRC Press, Boc Raton, United States. doi:10.1201/9780203357132.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-08-012

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Thaar Alqahtani

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message