Designing Climate-Adaptive Buildings: Impact of Courtyard Geometry on Microclimates in Hot, Dry Environments
Vol. 10 No. 8 (2024): August
Research Articles
Downloads
Doi: 10.28991/CEJ-2024-010-08-017
Full Text: PDF
Salameh, M., & Touqan, B. (2024). Designing Climate-Adaptive Buildings: Impact of Courtyard Geometry on Microclimates in Hot, Dry Environments. Civil Engineering Journal, 10(8), 2698–2718. https://doi.org/10.28991/CEJ-2024-010-08-017
[1] Salameh, M., & Touqan, B. (2023). From Heritage to Sustainability: The Future of the Past in the Hot Arid Climate of the UAE. Buildings, 13(2), 418. doi:10.3390/buildings13020418.
[2] DeKay, M., & Brown, G. Z. (2013). Sun, wind, and light: architectural design strategies. John Wiley & Sons, Hoboken, United States.
[3] Deng, Z., Javanroodi, K., Nik, V. M., & Chen, Y. (2023). Using urban building energy modeling to quantify the energy performance of residential buildings under climate change. Building Simulation, 16(9), 1629–1643. doi:10.1007/s12273-023-1032-2.
[4] Dervishi, S., & Baçi, N. (2023). Early design evaluation of low-rise school building morphology on energy performance: Climatic contexts of Southeast Europe. Energy, 269. doi:10.1016/j.energy.2023.126790.
[5] Sanaieian, H., Tenpierik, M., Linden, K. Van Den, Mehdizadeh Seraj, F., & Mofidi Shemrani, S. M. (2014). Review of the impact of urban block form on thermal performance, solar access and ventilation. Renewable and Sustainable Energy Reviews, 38, 551–560. doi:10.1016/j.rser.2014.06.007.
[6] Johansson, E. (2006). Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Building and Environment, 41(10), 1326–1338. doi:10.1016/j.buildenv.2005.05.022.
[7] Gupta, R. K. (2024). Identifying Urban Hotspots and Cold Spots in Delhi Using the Biophysical Landscape Framework. Ecology, Economy and Society, 7(1), 137–155. doi:10.37773/ees.v7i1.954.
[8] Nawawi, N. M., & Shamsudin, S. N. (2023). Climate and Archetype: Vernacular House-Forms as Tropical Urban Ideations. In Eco-Urbanism and the South East Asian City: Climate, Urban-Architectural Form and Heritage, 179–198. doi:10.1007/978-981-19-1637-3_10.
[9] Hachem-Vermette, C. (2018). Multistory building envelope: Creative design and enhanced performance. Solar Energy, 159, 710–721. doi:10.1016/j.solener.2017.11.012.
[10] Singh, M. K., Mahapatra, S., & Atreya, S. K. (2011). Adaptive thermal comfort model for different climatic zones of North-East India. Applied Energy, 88(7), 2420–2428. doi:10.1016/j.apenergy.2011.01.019.
[11] Zhao, K., Lv, G., Shen, C., & Ge, J. (2022). Investigating the effect of solar heat gain on intermittent operation characteristics of radiant cooling floor. Energy and Buildings, 255, 111628. doi:10.1016/j.enbuild.2021.111628.
[12] Liapopoulou, E., & Heo, Y. (2019). The Effect of Urban Geometry on Microclimate. Proceedings of Building Simulation 2019: 16th Conference of IBPSA. doi:10.26868/25222708.2019.211227.
[13] Cantón, M. A., Ganem, C., Barea, G., & Llano, J. F. (2014). Courtyards as a passive strategy in semi dry areas. Assessment of summer energy and thermal conditions in a refurbished school building. Renewable Energy, 69, 437–446. doi:10.1016/j.renene.2014.03.065.
[14] Jundus, A. (2021). The Effect of Urban Geometry on Microclimate and Outdoor Thermal Comfort (Downtown Tucson, Arizona as Case Study). Master Thesis, The University of Arizona, Tucson, United States.
[15] Sharmin, T., Steemers, K., & Matzarakis, A. (2017). Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustainable Cities and Society, 34, 293–308. doi:10.1016/j.scs.2017.07.006.
[16] Toparlar, Y., Blocken, B., Vos, P., Van Heijst, G. J. F., Janssen, W. D., van Hooff, T., Montazeri, H., & Timmermans, H. J. P. (2015). CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid, Rotterdam. Building and Environment, 83, 79–90. doi:10.1016/j.buildenv.2014.08.004.
[17] Wong, N. H., Jusuf, S. K., Syafii, N. I., Chen, Y., Hajadi, N., Sathyanarayanan, H., & Manickavasagam, Y. V. (2011). Evaluation of the impact of the surrounding urban morphology on building energy consumption. Solar Energy, 85(1), 57–71. doi:10.1016/j.solener.2010.11.002.
[18] Hu, Y., White, M., & Ding, W. (2016). An Urban Form Experiment on Urban Heat Island Effect in High Density Area. Procedia Engineering, 169, 166–174. doi:10.1016/j.proeng.2016.10.020.
[19] Rezaei Rad, H., Rafieian, M., & Sozer, H. (2019). Evaluating the effects of increasing of building height on land surface temperature. Journal of Urban Management and Energy Sustainability, 1(1), 52–57. doi:10.22034/ijumes.2017.01.01.002.
[20] Robitu, M., Musy, M., Inard, C., & Groleau, D. (2006). Modeling the influence of vegetation and water pond on urban microclimate. Solar Energy, 80(4), 435–447. doi:10.1016/j.solener.2005.06.015.
[21] Thomas, G., Thomas, J., Mathews, G. M., Alexander, S. P., & Jose, J. (2023). Assessment of the potential of green wall on modification of local urban microclimate in humid tropical climate using ENVI-met model. Ecological Engineering, 187, 106868. doi:10.1016/j.ecoleng.2022.106868.
[22] Soflaei, F., Shokouhian, M., & Mofidi Shemirani, S. M. (2016). Traditional Iranian courtyards as microclimate modifiers by considering orientation, dimensions, and proportions. Frontiers of Architectural Research, 5(2), 225–238. doi:10.1016/j.foar.2016.02.002.
[23] Kim, M. Jin, Kim, B. Gyeom, Koh, J. Sung, & Yi, H. (2023). Flexural biomimetic responsive building façade using a hybrid soft robot actuator and fabric membrane. Automation in Construction, 145, 104660. doi:10.1016/j.autcon.2022.104660.
[24] Xhexhi, K. (2023). In the Traces of Bioclimatic Architecture. The Urban Book Series. Springer, Cham, Switzerland. doi:10.1007/978-3-031-20959-8_5.
[25] Ingaramo, R., & Negrello, M. (2023). "Surviving the City”. Nature as an Architecture Design Strategy for a More Resilient Urban Ecosystem. Green Infrastructure. The Urban Book Series. Springer, Cham, Switzerland. doi:10.1007/978-3-031-28772-5_12.
[26] Verma, L. A., & Bano, F. (2023). Socio-Environmental Sustainability of Traditional Courtyard Houses of Lucknow and Varanasi. U.Porto Journal of Engineering, 9(1), 72–103. doi:10.24840/2183-6493_009-001_001438.
[27] Abuhussain, M. A., Al-Tamimi, N., Alotaibi, B. S., Singh, M. K., Kumar, S., & Elnaklah, R. (2022). Impact of Courtyard Concept on Energy Efficiency and Home Privacy in Saudi Arabia. Energies, 15(15), 5637. doi:10.3390/en15155637.
[28] Sun, Q., Luo, Z., & Bai, L. (2023). The Impact of Internal Courtyard Configuration on Thermal Performance of Long Strip Houses. Buildings, 13(2), 371. doi:10.3390/buildings13020371.
[29] Soltanzadeh, H. (2011). The role of geography on formation courtyards in traditional houses in Iran. Human Geography Research, 43(1), 69-86.
[30] Diz-Mellado, E., López-Cabeza, V. P., Rivera-Gómez, C., Galán-Marín, C., Rojas-Fernández, J., & Nikolopoulou, M. (2021). Extending the adaptive thermal comfort models for courtyards. Building and Environment, 203, 108094. doi:10.1016/j.buildenv.2021.108094.
[31] Kujundzic, K., Stamatovic Vuckovic, S., & Radivojević, A. (2023). Toward Regenerative Sustainability: A Passive Design Comfort Assessment Method of Indoor Environment. Sustainability (Switzerland), 15(1), 840. doi:10.3390/su15010840.
[32] Kamyab, A., Mahmoodi Zarandi, M., & Nikpour, M. (2023). Investigating the Effect of Different Proportions of Iwan and Window Area of Adjacent Room on Cooling/Heating Load and Energy Consumption in Central Courtyard Model in Yazd. Iranian Journal of Energy and Environment, 14(2), 118–126. doi:10.5829/ijee.2023.14.02.04.
[33] Salameh, M. M., Touqan, B. A., Awad, J., & Salameh, M. M. (2022). Heritage conservation as a bridge to sustainability assessing thermal performance and the preservation of identity through heritage conservation in the Mediterranean city of Nablus. Ain Shams Engineering Journal, 13(2), 101553. doi:10.1016/j.asej.2021.07.007.
[34] Pardo, J. M. F. (2023). Challenges and Current Research Trends for Vernacular Architecture in a Global World: A Literature Review. Buildings, 13(1), 162. doi:10.3390/buildings13010162.
[35] Rajapaksha, I., Nagai, H., & Okumiya, M. (2003). A ventilated courtyard as a passive cooling strategy in the warm humid tropics. Renewable Energy, 28(11), 1755–1778. doi:10.1016/S0960-1481(03)00012-0.
[36] Wen, B., Yang, Q., Xu, F., Zhou, J., & Zhang, R. (2023). Phenomenon of courtyards being roofed and its significance for building energy efficiency. Energy and Buildings, 295, 113282. doi:10.1016/j.enbuild.2023.113282.
[37] Sthapak, S., & Bandyopadhyay, A. Courtyard houses: An overview. Recent Research in Science and Technology, 6(1).
[38] Díaz-López, C., Serrano-Jiménez, A., Verichev, K., & Barrios-Padura, í. (2022). Passive cooling strategies to optimise sustainability and environmental ergonomics in Mediterranean schools based on a critical review. Building and Environment, 221, 109297. doi:10.1016/j.buildenv.2022.109297.
[39] Salameh, M., Abu-Hijleh, B., & Touqan, B. (2024). Impact of courtyard orientation on thermal performance of school buildings' temperature. Urban Climate, 54, 101853. doi:10.1016/j.uclim.2024.101853.
[40] He, C., Tian, W., & Shao, Z. (2022). Impacts of Courtyard Envelope Design on Energy Performance in the Hot Summer–Cold Winter Region of China. Buildings, 12(2), 173. doi:10.3390/buildings12020173.
[41] Martinelli, L., & Matzarakis, A. (2017). Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones. Sustainable Cities and Society, 29, 97–106. doi:10.1016/j.scs.2016.12.004.
[42] Zhang, A., Bokel, R., van den Dobbelsteen, A., Sun, Y., Huang, Q., & Zhang, Q. (2017). The effect of geometry parameters on energy and thermal performance of school buildings in cold climates of China. Sustainability (Switzerland), 9(10), 1708. doi:10.3390/su9101708.
[43] Soflaei, F., Shokouhian, M., & Mofidi Shemirani, S. M. (2016). Investigation of Iranian traditional courtyard as passive cooling strategy (a field study on BS climate). International Journal of Sustainable Built Environment, 5(1), 99–113. doi:10.1016/j.ijsbe.2015.12.001.
[44] Tabesh, T., & Sertyesilisik, B. (2016). An investigation into energy performance with the integrated usage of a courtyard and atrium. Buildings, 6(2), 21. doi:10.3390/buildings6020021.
[45] Dias De Carvalho, R. A. (2015). Courtyard housing as a subtropical urban design model. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia.
[46] Zakaria, M. A., & Kubota, T. (2014). Environmental Design Consideration for Courtyards in Residential Buildings in Hot-humid Climates: A Review. International Journal of Built Environment and Sustainability, 1(1), 45-51. doi:10.11113/ijbes.v1.n1.7.
[47] Almhafdy, A., Ibrahim, N., Ahmad, S. S., & Yahya, J. (2013). Courtyard Design Variants and Microclimate Performance. Procedia - Social and Behavioral Sciences, 101, 170–180. doi:10.1016/j.sbspro.2013.07.190.
[48] Salata, F., Golasi, I., de Lieto Vollaro, R., & de Lieto Vollaro, A. (2016). Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustainable Cities and Society, 26, 318–343. doi:10.1016/j.scs.2016.07.005.
[49] Markus, B. (2016). A review on courtyard design criteria in different climatic zones. African Research Review, 10(5), 181. doi:10.4314/afrrev.v10i5.13.
[50] Kolozali, R., & Kolozali, T. (2016). The Role of the Courtyard in the Establishment of Architecture in Cyprus. Architecture Research, 6(5), 123–130.
[51] Akubue, J. A., & Adesina, D. O. (2023). The Effect of Courtyard Geometry on Airflow Regimes for Ventilation in Tropical Nigerian Environment. Journal of Architectural Environment & Structural Engineering Research, 6(4), 1–10. doi:10.30564/jaeser.v6i4.5951.
[52] Tabadkani, A., Aghasizadeh, S., Banihashemi, S., & Hajirasouli, A. (2022). Courtyard design impact on indoor thermal comfort and utility costs for residential households: Comparative analysis and deep-learning predictive model. Frontiers of Architectural Research, 11(5), 963–980. doi:10.1016/j.foar.2022.02.006.
[53] Soflaei, F., Shokouhian, M., Tabadkani, A., Moslehi, H., & Berardi, U. (2020). A simulation-based model for courtyard housing design based on adaptive thermal comfort. Journal of Building Engineering, 31, 101335. doi:10.1016/j.jobe.2020.101335.
[54] Mousighichi, P. (2023). Comparison of courtyards in traditional Iranian houses in different climates of Iran. Master Thesis, İzmir Ekonomi íœniversitesi, İzmir, Türkiye.
[55] Al-Khatatbeh, B. J., & Ma'Bdeh, S. N. (2017). Improving visual comfort and energy efficiency in existing classrooms using passive daylighting techniques. Energy Procedia, 136, 102–108. doi:10.1016/j.egypro.2017.10.294.
[56] Gil-Baez, M., Padura, í. B., & Huelva, M. M. (2019). Passive actions in the building envelope to enhance sustainability of schools in a Mediterranean climate. Energy, 167(C), 144–158. doi:10.1016/j.energy.2018.10.094.
[57] Heracleous, C. & Michael, A. (2017). Climate Change and Thermal Comfort in Educational Buildings of Southern Europe: The Case of Cyprus. Proceeding of SEEP2017, 27-30 June, Bled, Slovenia.
[58] Salameh, M., Touqan, B., & Suliman, A. (2023). Enhancing student satisfaction and academic performance through school courtyard design: a quantitative analysis. Architectural Engineering and Design Management, 20(4), 911–927. doi:10.1080/17452007.2023.2295344.
[59] Huttner, S. (2012). Further development and application of the 3D microclimate simulation ENVI-met. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
[60] Tsoka, S., Tsikaloudaki, A., & Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model's performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 43, 55–76. doi:10.1016/j.scs.2018.08.009.
[61] Lee, H., Mayer, H., & Chen, L. (2016). Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landscape and Urban Planning, 148, 37–50. doi:10.1016/j.landurbplan.2015.12.004.
[62] Paas, B., & Schneider, C. (2016). A comparison of model performance between ENVI-met and Austal2000 for particulate matter. Atmospheric Environment, 145, 392–404. doi:10.1016/j.atmosenv.2016.09.031.
[63] Simon, H. (2016). Modeling urban microclimate: development, implementation and evaluation of new and improved calculation methods for the urban microclimate model ENVI-met. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
[64] Teledyne FLIR (2024). Extech: The World's Sixth Sense. Teledyne FLIR LLC, Oregon, United States. Available online: http://www.extech.com/resources/45170_UM.pdf n (accessed on May 2024).
[65] Wang, H., Cai, Y., Deng, W., Li, C., Dong, Y., Zhou, L., Sun, J., Li, C., Song, B., Zhang, F., & Zhou, G. (2023). The Effects of Tree Canopy Structure and Tree Coverage Ratios on Urban Air Temperature Based on ENVI-Met. Forests, 14(1), 80. doi:10.3390/f14010080.
[66] Song, B., Kim, S. H., Park, G., & Park, K. (2024). Comparison of urban physical environments and thermal properties extracted from unmanned aerial vehicle images and ENVI-met model simulations. Building and Environment, 261. doi:10.1016/j.buildenv.2024.111705.
[67] Taleghani, M., Tenpierik, M., & van den Dobbelsteen, A. (2014). Energy performance and thermal comfort of courtyard/atrium dwellings in the Netherlands in the light of climate change. Renewable Energy, 63, 486–497. doi:10.1016/j.renene.2013.09.028.
[68] Forouzandeh, A. (2018). Numerical modeling validation for the microclimate thermal condition of semi-closed courtyard spaces between buildings. Sustainable Cities and Society, 36, 327–345. doi:10.1016/j.scs.2017.07.025.
[69] The World Bank Group (2023). UAE air temperature: The average monthly air temperature throughout the year in the UAE. Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/country/united-arab-emirates/climate-data-historical (accessed on May 2024).
[70] Khalfan, M., & Sharples, S. (2016). Thermal comfort analysis for the first passivhaus project in Qatar. Proceedings of the SBE16 Dubai, 17-19 January, 2016, Dubai, United Arab Emirates.
[71] Feroz, S. M. (2014). Achieving thermal comfort by applying passive cooling strategies to courtyard houses in Dubai (UAE). Master Thesis, The British University in Dubai, Dubai, United Arab Emirates.
[72] Jin, H., Liu, Z., Jin, Y., Kang, J., & Liu, J. (2017). The effects of residential area building layout on outdoor wind environment at the pedestrian level in severe cold regions of China. Sustainability (Switzerland), 9(12), 2310. doi:10.3390/su9122310.
[73] Kuznik, F., & Virgone, J. (2009). Experimental assessment of a phase change material for wall building use. Applied energy, 86(10), 2038-2046. doi:10.1016/j.apenergy.2009.01.004.
[74] Al-Sallal, K. A. (2010). Daylighting and visual performance: Evaluation of classroom design issues in the UAE. International Journal of Low-Carbon Technologies, 5(4), 201–209. doi:10.1093/ijlct/ctq025.
[75] Shrestha, M., & Rijal, H. B. (2023). Investigation on Summer Thermal Comfort and Passive Thermal Improvements in Naturally Ventilated Nepalese School Buildings. Energies, 16(3), 1251. doi:10.3390/en16031251.
[76] Tablada, A. (2013). Design recommendations for new courtyard buildings in compact historical Centre of Havana. Sustainable Building-Hong Kong Regional Conference Urban Density & Sustainability, 12-13 September, 2013, Crowne Plaza Hong Kong.
[77] Yaşa, E., & Ok, V. (2014). Evaluation of the effects of courtyard building shapes on solar heat gains and energy efficiency according to different climatic regions. Energy and Buildings, 73, 192–199. doi:10.1016/j.enbuild.2013.12.042.
[78] Sharmin, T., & Steemers, K. (2015). Exploring the effect of micro-climate data on building energy performance analysis. 7th International Conference on Sustainable Development in Building and Environment (SuDBE2015), 27-29 July, 2015, Reading, United Kingdom.
[79] Hussain, S., & Oosthuizen, P. H. (2012). Numerical study of buoyancy-driven natural ventilation in a simple three-storey atrium building. International Journal of Sustainable Built Environment, 1(2), 141–157. doi:10.1016/j.ijsbe.2013.07.001.
[80] Gherraz, H., Guechi, I., & Benzaoui, A. (2018). Strategy to Improve Outdoor Thermal Comfort in Open Public Space of a Desert City, Ouargla, Algeria. IOP Conference Series: Earth and Environmental Science, 151(1), 12036. doi:10.1088/1755-1315/151/1/012036.
[81] ENVI-met. (2024) Software, ENVI. ENVI-met, Essen, Germany. Available online: https://www.envi-met.com/software/ (accessed on July 2024).
[82] Langtree , I.C. (2023). Height to Weight Chart for Children: From Infants to Teens. Disable Worlds, Montreal, Canada. Available online: https://www.disabled-world.com/calculators-charts/height-weight-teens.php (accessed on July 2024).
[83] Zhu, J., Feng, J., Lu, J., Chen, Y., Li, W., Lian, P., & Zhao, X. (2023). A review of the influence of courtyard geometry and orientation on microclimate. Building and Environment, 236, 110269. doi:10.1016/j.buildenv.2023.110269.
[84] Diz-Mellado, E., Ruiz-Pardo, í., Rivera-Gómez, C., Sanchez de la Flor, F. J., & Galán-Marín, C. (2023). Unravelling the impact of courtyard geometry on cooling energy consumption in buildings. Building and Environment, 237, 110349. doi:10.1016/j.buildenv.2023.110349.
[85] Bassal, C., Rabea, M., & Felix, M. (2023). Comparative Study of Mediterranean Courtyard Houses and the Bioclimate Impact on Their Design from Four Axes: Historical, Environmental, Social and Geometry. In Green Building & Construction Economics. Green Building & Construction Economics. doi:10.37256/gbce.4120232263.
[86] Sahnoune, S., & Benhassine, N. (2023). Winter Thermal Comfort of a Typical Courtyard Geometry in a Semi-Arid Climate. Journal of Green Building, 18(1), 95–117. doi:10.3992/jgb.18.1.95.
[87] Wu, R., Fang, X., Liu, S., & Middel, A. (2023). A fast and accurate mean radiant temperature model for courtyards: Evidence from the Keyuan Garden in central Guangdong, China. Building and Environment, 229, 109916. doi:10.1016/j.buildenv.2022.109916.
[88] Diz-Mellado, E., López-Cabeza, V. P., Rivera-Gómez, C., & Galán-Marín, C. (2023). Performance evaluation and users' perception of courtyards role in indoor areas of mediterranean social housing. Journal of Environmental Management, 345, 118788. doi:10.1016/j.jenvman.2023.118788.
[2] DeKay, M., & Brown, G. Z. (2013). Sun, wind, and light: architectural design strategies. John Wiley & Sons, Hoboken, United States.
[3] Deng, Z., Javanroodi, K., Nik, V. M., & Chen, Y. (2023). Using urban building energy modeling to quantify the energy performance of residential buildings under climate change. Building Simulation, 16(9), 1629–1643. doi:10.1007/s12273-023-1032-2.
[4] Dervishi, S., & Baçi, N. (2023). Early design evaluation of low-rise school building morphology on energy performance: Climatic contexts of Southeast Europe. Energy, 269. doi:10.1016/j.energy.2023.126790.
[5] Sanaieian, H., Tenpierik, M., Linden, K. Van Den, Mehdizadeh Seraj, F., & Mofidi Shemrani, S. M. (2014). Review of the impact of urban block form on thermal performance, solar access and ventilation. Renewable and Sustainable Energy Reviews, 38, 551–560. doi:10.1016/j.rser.2014.06.007.
[6] Johansson, E. (2006). Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Building and Environment, 41(10), 1326–1338. doi:10.1016/j.buildenv.2005.05.022.
[7] Gupta, R. K. (2024). Identifying Urban Hotspots and Cold Spots in Delhi Using the Biophysical Landscape Framework. Ecology, Economy and Society, 7(1), 137–155. doi:10.37773/ees.v7i1.954.
[8] Nawawi, N. M., & Shamsudin, S. N. (2023). Climate and Archetype: Vernacular House-Forms as Tropical Urban Ideations. In Eco-Urbanism and the South East Asian City: Climate, Urban-Architectural Form and Heritage, 179–198. doi:10.1007/978-981-19-1637-3_10.
[9] Hachem-Vermette, C. (2018). Multistory building envelope: Creative design and enhanced performance. Solar Energy, 159, 710–721. doi:10.1016/j.solener.2017.11.012.
[10] Singh, M. K., Mahapatra, S., & Atreya, S. K. (2011). Adaptive thermal comfort model for different climatic zones of North-East India. Applied Energy, 88(7), 2420–2428. doi:10.1016/j.apenergy.2011.01.019.
[11] Zhao, K., Lv, G., Shen, C., & Ge, J. (2022). Investigating the effect of solar heat gain on intermittent operation characteristics of radiant cooling floor. Energy and Buildings, 255, 111628. doi:10.1016/j.enbuild.2021.111628.
[12] Liapopoulou, E., & Heo, Y. (2019). The Effect of Urban Geometry on Microclimate. Proceedings of Building Simulation 2019: 16th Conference of IBPSA. doi:10.26868/25222708.2019.211227.
[13] Cantón, M. A., Ganem, C., Barea, G., & Llano, J. F. (2014). Courtyards as a passive strategy in semi dry areas. Assessment of summer energy and thermal conditions in a refurbished school building. Renewable Energy, 69, 437–446. doi:10.1016/j.renene.2014.03.065.
[14] Jundus, A. (2021). The Effect of Urban Geometry on Microclimate and Outdoor Thermal Comfort (Downtown Tucson, Arizona as Case Study). Master Thesis, The University of Arizona, Tucson, United States.
[15] Sharmin, T., Steemers, K., & Matzarakis, A. (2017). Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustainable Cities and Society, 34, 293–308. doi:10.1016/j.scs.2017.07.006.
[16] Toparlar, Y., Blocken, B., Vos, P., Van Heijst, G. J. F., Janssen, W. D., van Hooff, T., Montazeri, H., & Timmermans, H. J. P. (2015). CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid, Rotterdam. Building and Environment, 83, 79–90. doi:10.1016/j.buildenv.2014.08.004.
[17] Wong, N. H., Jusuf, S. K., Syafii, N. I., Chen, Y., Hajadi, N., Sathyanarayanan, H., & Manickavasagam, Y. V. (2011). Evaluation of the impact of the surrounding urban morphology on building energy consumption. Solar Energy, 85(1), 57–71. doi:10.1016/j.solener.2010.11.002.
[18] Hu, Y., White, M., & Ding, W. (2016). An Urban Form Experiment on Urban Heat Island Effect in High Density Area. Procedia Engineering, 169, 166–174. doi:10.1016/j.proeng.2016.10.020.
[19] Rezaei Rad, H., Rafieian, M., & Sozer, H. (2019). Evaluating the effects of increasing of building height on land surface temperature. Journal of Urban Management and Energy Sustainability, 1(1), 52–57. doi:10.22034/ijumes.2017.01.01.002.
[20] Robitu, M., Musy, M., Inard, C., & Groleau, D. (2006). Modeling the influence of vegetation and water pond on urban microclimate. Solar Energy, 80(4), 435–447. doi:10.1016/j.solener.2005.06.015.
[21] Thomas, G., Thomas, J., Mathews, G. M., Alexander, S. P., & Jose, J. (2023). Assessment of the potential of green wall on modification of local urban microclimate in humid tropical climate using ENVI-met model. Ecological Engineering, 187, 106868. doi:10.1016/j.ecoleng.2022.106868.
[22] Soflaei, F., Shokouhian, M., & Mofidi Shemirani, S. M. (2016). Traditional Iranian courtyards as microclimate modifiers by considering orientation, dimensions, and proportions. Frontiers of Architectural Research, 5(2), 225–238. doi:10.1016/j.foar.2016.02.002.
[23] Kim, M. Jin, Kim, B. Gyeom, Koh, J. Sung, & Yi, H. (2023). Flexural biomimetic responsive building façade using a hybrid soft robot actuator and fabric membrane. Automation in Construction, 145, 104660. doi:10.1016/j.autcon.2022.104660.
[24] Xhexhi, K. (2023). In the Traces of Bioclimatic Architecture. The Urban Book Series. Springer, Cham, Switzerland. doi:10.1007/978-3-031-20959-8_5.
[25] Ingaramo, R., & Negrello, M. (2023). "Surviving the City”. Nature as an Architecture Design Strategy for a More Resilient Urban Ecosystem. Green Infrastructure. The Urban Book Series. Springer, Cham, Switzerland. doi:10.1007/978-3-031-28772-5_12.
[26] Verma, L. A., & Bano, F. (2023). Socio-Environmental Sustainability of Traditional Courtyard Houses of Lucknow and Varanasi. U.Porto Journal of Engineering, 9(1), 72–103. doi:10.24840/2183-6493_009-001_001438.
[27] Abuhussain, M. A., Al-Tamimi, N., Alotaibi, B. S., Singh, M. K., Kumar, S., & Elnaklah, R. (2022). Impact of Courtyard Concept on Energy Efficiency and Home Privacy in Saudi Arabia. Energies, 15(15), 5637. doi:10.3390/en15155637.
[28] Sun, Q., Luo, Z., & Bai, L. (2023). The Impact of Internal Courtyard Configuration on Thermal Performance of Long Strip Houses. Buildings, 13(2), 371. doi:10.3390/buildings13020371.
[29] Soltanzadeh, H. (2011). The role of geography on formation courtyards in traditional houses in Iran. Human Geography Research, 43(1), 69-86.
[30] Diz-Mellado, E., López-Cabeza, V. P., Rivera-Gómez, C., Galán-Marín, C., Rojas-Fernández, J., & Nikolopoulou, M. (2021). Extending the adaptive thermal comfort models for courtyards. Building and Environment, 203, 108094. doi:10.1016/j.buildenv.2021.108094.
[31] Kujundzic, K., Stamatovic Vuckovic, S., & Radivojević, A. (2023). Toward Regenerative Sustainability: A Passive Design Comfort Assessment Method of Indoor Environment. Sustainability (Switzerland), 15(1), 840. doi:10.3390/su15010840.
[32] Kamyab, A., Mahmoodi Zarandi, M., & Nikpour, M. (2023). Investigating the Effect of Different Proportions of Iwan and Window Area of Adjacent Room on Cooling/Heating Load and Energy Consumption in Central Courtyard Model in Yazd. Iranian Journal of Energy and Environment, 14(2), 118–126. doi:10.5829/ijee.2023.14.02.04.
[33] Salameh, M. M., Touqan, B. A., Awad, J., & Salameh, M. M. (2022). Heritage conservation as a bridge to sustainability assessing thermal performance and the preservation of identity through heritage conservation in the Mediterranean city of Nablus. Ain Shams Engineering Journal, 13(2), 101553. doi:10.1016/j.asej.2021.07.007.
[34] Pardo, J. M. F. (2023). Challenges and Current Research Trends for Vernacular Architecture in a Global World: A Literature Review. Buildings, 13(1), 162. doi:10.3390/buildings13010162.
[35] Rajapaksha, I., Nagai, H., & Okumiya, M. (2003). A ventilated courtyard as a passive cooling strategy in the warm humid tropics. Renewable Energy, 28(11), 1755–1778. doi:10.1016/S0960-1481(03)00012-0.
[36] Wen, B., Yang, Q., Xu, F., Zhou, J., & Zhang, R. (2023). Phenomenon of courtyards being roofed and its significance for building energy efficiency. Energy and Buildings, 295, 113282. doi:10.1016/j.enbuild.2023.113282.
[37] Sthapak, S., & Bandyopadhyay, A. Courtyard houses: An overview. Recent Research in Science and Technology, 6(1).
[38] Díaz-López, C., Serrano-Jiménez, A., Verichev, K., & Barrios-Padura, í. (2022). Passive cooling strategies to optimise sustainability and environmental ergonomics in Mediterranean schools based on a critical review. Building and Environment, 221, 109297. doi:10.1016/j.buildenv.2022.109297.
[39] Salameh, M., Abu-Hijleh, B., & Touqan, B. (2024). Impact of courtyard orientation on thermal performance of school buildings' temperature. Urban Climate, 54, 101853. doi:10.1016/j.uclim.2024.101853.
[40] He, C., Tian, W., & Shao, Z. (2022). Impacts of Courtyard Envelope Design on Energy Performance in the Hot Summer–Cold Winter Region of China. Buildings, 12(2), 173. doi:10.3390/buildings12020173.
[41] Martinelli, L., & Matzarakis, A. (2017). Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones. Sustainable Cities and Society, 29, 97–106. doi:10.1016/j.scs.2016.12.004.
[42] Zhang, A., Bokel, R., van den Dobbelsteen, A., Sun, Y., Huang, Q., & Zhang, Q. (2017). The effect of geometry parameters on energy and thermal performance of school buildings in cold climates of China. Sustainability (Switzerland), 9(10), 1708. doi:10.3390/su9101708.
[43] Soflaei, F., Shokouhian, M., & Mofidi Shemirani, S. M. (2016). Investigation of Iranian traditional courtyard as passive cooling strategy (a field study on BS climate). International Journal of Sustainable Built Environment, 5(1), 99–113. doi:10.1016/j.ijsbe.2015.12.001.
[44] Tabesh, T., & Sertyesilisik, B. (2016). An investigation into energy performance with the integrated usage of a courtyard and atrium. Buildings, 6(2), 21. doi:10.3390/buildings6020021.
[45] Dias De Carvalho, R. A. (2015). Courtyard housing as a subtropical urban design model. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia.
[46] Zakaria, M. A., & Kubota, T. (2014). Environmental Design Consideration for Courtyards in Residential Buildings in Hot-humid Climates: A Review. International Journal of Built Environment and Sustainability, 1(1), 45-51. doi:10.11113/ijbes.v1.n1.7.
[47] Almhafdy, A., Ibrahim, N., Ahmad, S. S., & Yahya, J. (2013). Courtyard Design Variants and Microclimate Performance. Procedia - Social and Behavioral Sciences, 101, 170–180. doi:10.1016/j.sbspro.2013.07.190.
[48] Salata, F., Golasi, I., de Lieto Vollaro, R., & de Lieto Vollaro, A. (2016). Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustainable Cities and Society, 26, 318–343. doi:10.1016/j.scs.2016.07.005.
[49] Markus, B. (2016). A review on courtyard design criteria in different climatic zones. African Research Review, 10(5), 181. doi:10.4314/afrrev.v10i5.13.
[50] Kolozali, R., & Kolozali, T. (2016). The Role of the Courtyard in the Establishment of Architecture in Cyprus. Architecture Research, 6(5), 123–130.
[51] Akubue, J. A., & Adesina, D. O. (2023). The Effect of Courtyard Geometry on Airflow Regimes for Ventilation in Tropical Nigerian Environment. Journal of Architectural Environment & Structural Engineering Research, 6(4), 1–10. doi:10.30564/jaeser.v6i4.5951.
[52] Tabadkani, A., Aghasizadeh, S., Banihashemi, S., & Hajirasouli, A. (2022). Courtyard design impact on indoor thermal comfort and utility costs for residential households: Comparative analysis and deep-learning predictive model. Frontiers of Architectural Research, 11(5), 963–980. doi:10.1016/j.foar.2022.02.006.
[53] Soflaei, F., Shokouhian, M., Tabadkani, A., Moslehi, H., & Berardi, U. (2020). A simulation-based model for courtyard housing design based on adaptive thermal comfort. Journal of Building Engineering, 31, 101335. doi:10.1016/j.jobe.2020.101335.
[54] Mousighichi, P. (2023). Comparison of courtyards in traditional Iranian houses in different climates of Iran. Master Thesis, İzmir Ekonomi íœniversitesi, İzmir, Türkiye.
[55] Al-Khatatbeh, B. J., & Ma'Bdeh, S. N. (2017). Improving visual comfort and energy efficiency in existing classrooms using passive daylighting techniques. Energy Procedia, 136, 102–108. doi:10.1016/j.egypro.2017.10.294.
[56] Gil-Baez, M., Padura, í. B., & Huelva, M. M. (2019). Passive actions in the building envelope to enhance sustainability of schools in a Mediterranean climate. Energy, 167(C), 144–158. doi:10.1016/j.energy.2018.10.094.
[57] Heracleous, C. & Michael, A. (2017). Climate Change and Thermal Comfort in Educational Buildings of Southern Europe: The Case of Cyprus. Proceeding of SEEP2017, 27-30 June, Bled, Slovenia.
[58] Salameh, M., Touqan, B., & Suliman, A. (2023). Enhancing student satisfaction and academic performance through school courtyard design: a quantitative analysis. Architectural Engineering and Design Management, 20(4), 911–927. doi:10.1080/17452007.2023.2295344.
[59] Huttner, S. (2012). Further development and application of the 3D microclimate simulation ENVI-met. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
[60] Tsoka, S., Tsikaloudaki, A., & Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model's performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 43, 55–76. doi:10.1016/j.scs.2018.08.009.
[61] Lee, H., Mayer, H., & Chen, L. (2016). Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landscape and Urban Planning, 148, 37–50. doi:10.1016/j.landurbplan.2015.12.004.
[62] Paas, B., & Schneider, C. (2016). A comparison of model performance between ENVI-met and Austal2000 for particulate matter. Atmospheric Environment, 145, 392–404. doi:10.1016/j.atmosenv.2016.09.031.
[63] Simon, H. (2016). Modeling urban microclimate: development, implementation and evaluation of new and improved calculation methods for the urban microclimate model ENVI-met. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
[64] Teledyne FLIR (2024). Extech: The World's Sixth Sense. Teledyne FLIR LLC, Oregon, United States. Available online: http://www.extech.com/resources/45170_UM.pdf n (accessed on May 2024).
[65] Wang, H., Cai, Y., Deng, W., Li, C., Dong, Y., Zhou, L., Sun, J., Li, C., Song, B., Zhang, F., & Zhou, G. (2023). The Effects of Tree Canopy Structure and Tree Coverage Ratios on Urban Air Temperature Based on ENVI-Met. Forests, 14(1), 80. doi:10.3390/f14010080.
[66] Song, B., Kim, S. H., Park, G., & Park, K. (2024). Comparison of urban physical environments and thermal properties extracted from unmanned aerial vehicle images and ENVI-met model simulations. Building and Environment, 261. doi:10.1016/j.buildenv.2024.111705.
[67] Taleghani, M., Tenpierik, M., & van den Dobbelsteen, A. (2014). Energy performance and thermal comfort of courtyard/atrium dwellings in the Netherlands in the light of climate change. Renewable Energy, 63, 486–497. doi:10.1016/j.renene.2013.09.028.
[68] Forouzandeh, A. (2018). Numerical modeling validation for the microclimate thermal condition of semi-closed courtyard spaces between buildings. Sustainable Cities and Society, 36, 327–345. doi:10.1016/j.scs.2017.07.025.
[69] The World Bank Group (2023). UAE air temperature: The average monthly air temperature throughout the year in the UAE. Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/country/united-arab-emirates/climate-data-historical (accessed on May 2024).
[70] Khalfan, M., & Sharples, S. (2016). Thermal comfort analysis for the first passivhaus project in Qatar. Proceedings of the SBE16 Dubai, 17-19 January, 2016, Dubai, United Arab Emirates.
[71] Feroz, S. M. (2014). Achieving thermal comfort by applying passive cooling strategies to courtyard houses in Dubai (UAE). Master Thesis, The British University in Dubai, Dubai, United Arab Emirates.
[72] Jin, H., Liu, Z., Jin, Y., Kang, J., & Liu, J. (2017). The effects of residential area building layout on outdoor wind environment at the pedestrian level in severe cold regions of China. Sustainability (Switzerland), 9(12), 2310. doi:10.3390/su9122310.
[73] Kuznik, F., & Virgone, J. (2009). Experimental assessment of a phase change material for wall building use. Applied energy, 86(10), 2038-2046. doi:10.1016/j.apenergy.2009.01.004.
[74] Al-Sallal, K. A. (2010). Daylighting and visual performance: Evaluation of classroom design issues in the UAE. International Journal of Low-Carbon Technologies, 5(4), 201–209. doi:10.1093/ijlct/ctq025.
[75] Shrestha, M., & Rijal, H. B. (2023). Investigation on Summer Thermal Comfort and Passive Thermal Improvements in Naturally Ventilated Nepalese School Buildings. Energies, 16(3), 1251. doi:10.3390/en16031251.
[76] Tablada, A. (2013). Design recommendations for new courtyard buildings in compact historical Centre of Havana. Sustainable Building-Hong Kong Regional Conference Urban Density & Sustainability, 12-13 September, 2013, Crowne Plaza Hong Kong.
[77] Yaşa, E., & Ok, V. (2014). Evaluation of the effects of courtyard building shapes on solar heat gains and energy efficiency according to different climatic regions. Energy and Buildings, 73, 192–199. doi:10.1016/j.enbuild.2013.12.042.
[78] Sharmin, T., & Steemers, K. (2015). Exploring the effect of micro-climate data on building energy performance analysis. 7th International Conference on Sustainable Development in Building and Environment (SuDBE2015), 27-29 July, 2015, Reading, United Kingdom.
[79] Hussain, S., & Oosthuizen, P. H. (2012). Numerical study of buoyancy-driven natural ventilation in a simple three-storey atrium building. International Journal of Sustainable Built Environment, 1(2), 141–157. doi:10.1016/j.ijsbe.2013.07.001.
[80] Gherraz, H., Guechi, I., & Benzaoui, A. (2018). Strategy to Improve Outdoor Thermal Comfort in Open Public Space of a Desert City, Ouargla, Algeria. IOP Conference Series: Earth and Environmental Science, 151(1), 12036. doi:10.1088/1755-1315/151/1/012036.
[81] ENVI-met. (2024) Software, ENVI. ENVI-met, Essen, Germany. Available online: https://www.envi-met.com/software/ (accessed on July 2024).
[82] Langtree , I.C. (2023). Height to Weight Chart for Children: From Infants to Teens. Disable Worlds, Montreal, Canada. Available online: https://www.disabled-world.com/calculators-charts/height-weight-teens.php (accessed on July 2024).
[83] Zhu, J., Feng, J., Lu, J., Chen, Y., Li, W., Lian, P., & Zhao, X. (2023). A review of the influence of courtyard geometry and orientation on microclimate. Building and Environment, 236, 110269. doi:10.1016/j.buildenv.2023.110269.
[84] Diz-Mellado, E., Ruiz-Pardo, í., Rivera-Gómez, C., Sanchez de la Flor, F. J., & Galán-Marín, C. (2023). Unravelling the impact of courtyard geometry on cooling energy consumption in buildings. Building and Environment, 237, 110349. doi:10.1016/j.buildenv.2023.110349.
[85] Bassal, C., Rabea, M., & Felix, M. (2023). Comparative Study of Mediterranean Courtyard Houses and the Bioclimate Impact on Their Design from Four Axes: Historical, Environmental, Social and Geometry. In Green Building & Construction Economics. Green Building & Construction Economics. doi:10.37256/gbce.4120232263.
[86] Sahnoune, S., & Benhassine, N. (2023). Winter Thermal Comfort of a Typical Courtyard Geometry in a Semi-Arid Climate. Journal of Green Building, 18(1), 95–117. doi:10.3992/jgb.18.1.95.
[87] Wu, R., Fang, X., Liu, S., & Middel, A. (2023). A fast and accurate mean radiant temperature model for courtyards: Evidence from the Keyuan Garden in central Guangdong, China. Building and Environment, 229, 109916. doi:10.1016/j.buildenv.2022.109916.
[88] Diz-Mellado, E., López-Cabeza, V. P., Rivera-Gómez, C., & Galán-Marín, C. (2023). Performance evaluation and users' perception of courtyards role in indoor areas of mediterranean social housing. Journal of Environmental Management, 345, 118788. doi:10.1016/j.jenvman.2023.118788.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
