Designing Climate-Adaptive Buildings: Impact of Courtyard Geometry on Microclimates in Hot, Dry Environments

Muna Salameh, Basim Touqan

Abstract


Designing climate-adaptive buildings is crucial for mitigating the adverse effects of climate change by enhancing energy efficiency and reducing greenhouse gas emissions. Additionally, such designs improve thermal comfort and resilience in urban environments, particularly in regions with extreme climates, thereby promoting sustainable living conditions. This study aims to mitigate climate change through strategic urban and building design, focusing on the impact of building geometry and courtyard configurations on enhancing microclimates and thermal comfort in the UAE's hot arid climate. Utilizing ENVI-met software for qualitative analysis, the research examines design modifications in a school building's layout and courtyards. The analysis and findings reveal that strategic alterations can reduce outdoor air temperatures by up to 1.45°C and average building temperatures by approximately 1.89°C. Additionally, these modifications significantly improve thermal comfort perceptions on the PMV scale. The findings underscore the potential of architectural design to contribute to climate change mitigation efforts, highlighting the importance of thoughtful building and courtyard designs in promoting sustainable architecture and urban planning. This study offers novel insights into the role of design in enhancing thermal environments, providing a practical approach for developing climate-adaptive buildings in hot, dry environments.

 

Doi: 10.28991/CEJ-2024-010-08-017

Full Text: PDF


Keywords


Microclimates and Climate; Courtyards; Building Geometry; Energy Efficiency; Thermal Comfort; UAE.

References


Salameh, M., & Touqan, B. (2023). From Heritage to Sustainability: The Future of the Past in the Hot Arid Climate of the UAE. Buildings, 13(2), 418. doi:10.3390/buildings13020418.

DeKay, M., & Brown, G. Z. (2013). Sun, wind, and light: architectural design strategies. John Wiley & Sons, Hoboken, United States.

Deng, Z., Javanroodi, K., Nik, V. M., & Chen, Y. (2023). Using urban building energy modeling to quantify the energy performance of residential buildings under climate change. Building Simulation, 16(9), 1629–1643. doi:10.1007/s12273-023-1032-2.

Dervishi, S., & Baçi, N. (2023). Early design evaluation of low-rise school building morphology on energy performance: Climatic contexts of Southeast Europe. Energy, 269. doi:10.1016/j.energy.2023.126790.

Sanaieian, H., Tenpierik, M., Linden, K. Van Den, Mehdizadeh Seraj, F., & Mofidi Shemrani, S. M. (2014). Review of the impact of urban block form on thermal performance, solar access and ventilation. Renewable and Sustainable Energy Reviews, 38, 551–560. doi:10.1016/j.rser.2014.06.007.

Johansson, E. (2006). Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Building and Environment, 41(10), 1326–1338. doi:10.1016/j.buildenv.2005.05.022.

Gupta, R. K. (2024). Identifying Urban Hotspots and Cold Spots in Delhi Using the Biophysical Landscape Framework. Ecology, Economy and Society, 7(1), 137–155. doi:10.37773/ees.v7i1.954.

Nawawi, N. M., & Shamsudin, S. N. (2023). Climate and Archetype: Vernacular House-Forms as Tropical Urban Ideations. In Eco-Urbanism and the South East Asian City: Climate, Urban-Architectural Form and Heritage, 179–198. doi:10.1007/978-981-19-1637-3_10.

Hachem-Vermette, C. (2018). Multistory building envelope: Creative design and enhanced performance. Solar Energy, 159, 710–721. doi:10.1016/j.solener.2017.11.012.

Singh, M. K., Mahapatra, S., & Atreya, S. K. (2011). Adaptive thermal comfort model for different climatic zones of North-East India. Applied Energy, 88(7), 2420–2428. doi:10.1016/j.apenergy.2011.01.019.

Zhao, K., Lv, G., Shen, C., & Ge, J. (2022). Investigating the effect of solar heat gain on intermittent operation characteristics of radiant cooling floor. Energy and Buildings, 255, 111628. doi:10.1016/j.enbuild.2021.111628.

Liapopoulou, E., & Heo, Y. (2019). The Effect of Urban Geometry on Microclimate. Proceedings of Building Simulation 2019: 16th Conference of IBPSA. doi:10.26868/25222708.2019.211227.

Cantón, M. A., Ganem, C., Barea, G., & Llano, J. F. (2014). Courtyards as a passive strategy in semi dry areas. Assessment of summer energy and thermal conditions in a refurbished school building. Renewable Energy, 69, 437–446. doi:10.1016/j.renene.2014.03.065.

Jundus, A. (2021). The Effect of Urban Geometry on Microclimate and Outdoor Thermal Comfort (Downtown Tucson, Arizona as Case Study). Master Thesis, The University of Arizona, Tucson, United States.

Sharmin, T., Steemers, K., & Matzarakis, A. (2017). Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustainable Cities and Society, 34, 293–308. doi:10.1016/j.scs.2017.07.006.

Toparlar, Y., Blocken, B., Vos, P., Van Heijst, G. J. F., Janssen, W. D., van Hooff, T., Montazeri, H., & Timmermans, H. J. P. (2015). CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid, Rotterdam. Building and Environment, 83, 79–90. doi:10.1016/j.buildenv.2014.08.004.

Wong, N. H., Jusuf, S. K., Syafii, N. I., Chen, Y., Hajadi, N., Sathyanarayanan, H., & Manickavasagam, Y. V. (2011). Evaluation of the impact of the surrounding urban morphology on building energy consumption. Solar Energy, 85(1), 57–71. doi:10.1016/j.solener.2010.11.002.

Hu, Y., White, M., & Ding, W. (2016). An Urban Form Experiment on Urban Heat Island Effect in High Density Area. Procedia Engineering, 169, 166–174. doi:10.1016/j.proeng.2016.10.020.

Rezaei Rad, H., Rafieian, M., & Sozer, H. (2019). Evaluating the effects of increasing of building height on land surface temperature. Journal of Urban Management and Energy Sustainability, 1(1), 52–57. doi:10.22034/ijumes.2017.01.01.002.

Robitu, M., Musy, M., Inard, C., & Groleau, D. (2006). Modeling the influence of vegetation and water pond on urban microclimate. Solar Energy, 80(4), 435–447. doi:10.1016/j.solener.2005.06.015.

Thomas, G., Thomas, J., Mathews, G. M., Alexander, S. P., & Jose, J. (2023). Assessment of the potential of green wall on modification of local urban microclimate in humid tropical climate using ENVI-met model. Ecological Engineering, 187, 106868. doi:10.1016/j.ecoleng.2022.106868.

Soflaei, F., Shokouhian, M., & Mofidi Shemirani, S. M. (2016). Traditional Iranian courtyards as microclimate modifiers by considering orientation, dimensions, and proportions. Frontiers of Architectural Research, 5(2), 225–238. doi:10.1016/j.foar.2016.02.002.

Kim, M. Jin, Kim, B. Gyeom, Koh, J. Sung, & Yi, H. (2023). Flexural biomimetic responsive building façade using a hybrid soft robot actuator and fabric membrane. Automation in Construction, 145, 104660. doi:10.1016/j.autcon.2022.104660.

Xhexhi, K. (2023). In the Traces of Bioclimatic Architecture. The Urban Book Series. Springer, Cham, Switzerland. doi:10.1007/978-3-031-20959-8_5.

Ingaramo, R., & Negrello, M. (2023). “Surviving the City”. Nature as an Architecture Design Strategy for a More Resilient Urban Ecosystem. Green Infrastructure. The Urban Book Series. Springer, Cham, Switzerland. doi:10.1007/978-3-031-28772-5_12.

Verma, L. A., & Bano, F. (2023). Socio-Environmental Sustainability of Traditional Courtyard Houses of Lucknow and Varanasi. U.Porto Journal of Engineering, 9(1), 72–103. doi:10.24840/2183-6493_009-001_001438.

Abuhussain, M. A., Al-Tamimi, N., Alotaibi, B. S., Singh, M. K., Kumar, S., & Elnaklah, R. (2022). Impact of Courtyard Concept on Energy Efficiency and Home Privacy in Saudi Arabia. Energies, 15(15), 5637. doi:10.3390/en15155637.

Sun, Q., Luo, Z., & Bai, L. (2023). The Impact of Internal Courtyard Configuration on Thermal Performance of Long Strip Houses. Buildings, 13(2), 371. doi:10.3390/buildings13020371.

Soltanzadeh, H. (2011). The role of geography on formation courtyards in traditional houses in Iran. Human Geography Research, 43(1), 69-86.

Diz-Mellado, E., López-Cabeza, V. P., Rivera-Gómez, C., Galán-Marín, C., Rojas-Fernández, J., & Nikolopoulou, M. (2021). Extending the adaptive thermal comfort models for courtyards. Building and Environment, 203, 108094. doi:10.1016/j.buildenv.2021.108094.

Kujundzic, K., Stamatovic Vuckovic, S., & Radivojević, A. (2023). Toward Regenerative Sustainability: A Passive Design Comfort Assessment Method of Indoor Environment. Sustainability (Switzerland), 15(1), 840. doi:10.3390/su15010840.

Kamyab, A., Mahmoodi Zarandi, M., & Nikpour, M. (2023). Investigating the Effect of Different Proportions of Iwan and Window Area of Adjacent Room on Cooling/Heating Load and Energy Consumption in Central Courtyard Model in Yazd. Iranian Journal of Energy and Environment, 14(2), 118–126. doi:10.5829/ijee.2023.14.02.04.

Salameh, M. M., Touqan, B. A., Awad, J., & Salameh, M. M. (2022). Heritage conservation as a bridge to sustainability assessing thermal performance and the preservation of identity through heritage conservation in the Mediterranean city of Nablus. Ain Shams Engineering Journal, 13(2), 101553. doi:10.1016/j.asej.2021.07.007.

Pardo, J. M. F. (2023). Challenges and Current Research Trends for Vernacular Architecture in a Global World: A Literature Review. Buildings, 13(1), 162. doi:10.3390/buildings13010162.

Rajapaksha, I., Nagai, H., & Okumiya, M. (2003). A ventilated courtyard as a passive cooling strategy in the warm humid tropics. Renewable Energy, 28(11), 1755–1778. doi:10.1016/S0960-1481(03)00012-0.

Wen, B., Yang, Q., Xu, F., Zhou, J., & Zhang, R. (2023). Phenomenon of courtyards being roofed and its significance for building energy efficiency. Energy and Buildings, 295, 113282. doi:10.1016/j.enbuild.2023.113282.

Sthapak, S., & Bandyopadhyay, A. Courtyard houses: An overview. Recent Research in Science and Technology, 6(1).

Díaz-López, C., Serrano-Jiménez, A., Verichev, K., & Barrios-Padura, Á. (2022). Passive cooling strategies to optimise sustainability and environmental ergonomics in Mediterranean schools based on a critical review. Building and Environment, 221, 109297. doi:10.1016/j.buildenv.2022.109297.

Salameh, M., Abu-Hijleh, B., & Touqan, B. (2024). Impact of courtyard orientation on thermal performance of school buildings’ temperature. Urban Climate, 54, 101853. doi:10.1016/j.uclim.2024.101853.

He, C., Tian, W., & Shao, Z. (2022). Impacts of Courtyard Envelope Design on Energy Performance in the Hot Summer–Cold Winter Region of China. Buildings, 12(2), 173. doi:10.3390/buildings12020173.

Martinelli, L., & Matzarakis, A. (2017). Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones. Sustainable Cities and Society, 29, 97–106. doi:10.1016/j.scs.2016.12.004.

Zhang, A., Bokel, R., van den Dobbelsteen, A., Sun, Y., Huang, Q., & Zhang, Q. (2017). The effect of geometry parameters on energy and thermal performance of school buildings in cold climates of China. Sustainability (Switzerland), 9(10), 1708. doi:10.3390/su9101708.

Soflaei, F., Shokouhian, M., & Mofidi Shemirani, S. M. (2016). Investigation of Iranian traditional courtyard as passive cooling strategy (a field study on BS climate). International Journal of Sustainable Built Environment, 5(1), 99–113. doi:10.1016/j.ijsbe.2015.12.001.

Tabesh, T., & Sertyesilisik, B. (2016). An investigation into energy performance with the integrated usage of a courtyard and atrium. Buildings, 6(2), 21. doi:10.3390/buildings6020021.

Dias De Carvalho, R. A. (2015). Courtyard housing as a subtropical urban design model. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia.

Zakaria, M. A., & Kubota, T. (2014). Environmental Design Consideration for Courtyards in Residential Buildings in Hot-humid Climates: A Review. International Journal of Built Environment and Sustainability, 1(1), 45-51. doi:10.11113/ijbes.v1.n1.7.

Almhafdy, A., Ibrahim, N., Ahmad, S. S., & Yahya, J. (2013). Courtyard Design Variants and Microclimate Performance. Procedia - Social and Behavioral Sciences, 101, 170–180. doi:10.1016/j.sbspro.2013.07.190.

Salata, F., Golasi, I., de Lieto Vollaro, R., & de Lieto Vollaro, A. (2016). Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustainable Cities and Society, 26, 318–343. doi:10.1016/j.scs.2016.07.005.

Markus, B. (2016). A review on courtyard design criteria in different climatic zones. African Research Review, 10(5), 181. doi:10.4314/afrrev.v10i5.13.

Kolozali, R., & Kolozali, T. (2016). The Role of the Courtyard in the Establishment of Architecture in Cyprus. Architecture Research, 6(5), 123–130.

Akubue, J. A., & Adesina, D. O. (2023). The Effect of Courtyard Geometry on Airflow Regimes for Ventilation in Tropical Nigerian Environment. Journal of Architectural Environment & Structural Engineering Research, 6(4), 1–10. doi:10.30564/jaeser.v6i4.5951.

Tabadkani, A., Aghasizadeh, S., Banihashemi, S., & Hajirasouli, A. (2022). Courtyard design impact on indoor thermal comfort and utility costs for residential households: Comparative analysis and deep-learning predictive model. Frontiers of Architectural Research, 11(5), 963–980. doi:10.1016/j.foar.2022.02.006.

Soflaei, F., Shokouhian, M., Tabadkani, A., Moslehi, H., & Berardi, U. (2020). A simulation-based model for courtyard housing design based on adaptive thermal comfort. Journal of Building Engineering, 31, 101335. doi:10.1016/j.jobe.2020.101335.

Mousighichi, P. (2023). Comparison of courtyards in traditional Iranian houses in different climates of Iran. Master Thesis, İzmir Ekonomi Üniversitesi, İzmir, Türkiye.

Al-Khatatbeh, B. J., & Ma’Bdeh, S. N. (2017). Improving visual comfort and energy efficiency in existing classrooms using passive daylighting techniques. Energy Procedia, 136, 102–108. doi:10.1016/j.egypro.2017.10.294.

Gil-Baez, M., Padura, Á. B., & Huelva, M. M. (2019). Passive actions in the building envelope to enhance sustainability of schools in a Mediterranean climate. Energy, 167(C), 144–158. doi:10.1016/j.energy.2018.10.094.

Heracleous, C. & Michael, A. (2017). Climate Change and Thermal Comfort in Educational Buildings of Southern Europe: The Case of Cyprus. Proceeding of SEEP2017, 27-30 June, Bled, Slovenia.

Salameh, M., Touqan, B., & Suliman, A. (2023). Enhancing student satisfaction and academic performance through school courtyard design: a quantitative analysis. Architectural Engineering and Design Management, 20(4), 911–927. doi:10.1080/17452007.2023.2295344.

Huttner, S. (2012). Further development and application of the 3D microclimate simulation ENVI-met. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Tsoka, S., Tsikaloudaki, A., & Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 43, 55–76. doi:10.1016/j.scs.2018.08.009.

Lee, H., Mayer, H., & Chen, L. (2016). Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landscape and Urban Planning, 148, 37–50. doi:10.1016/j.landurbplan.2015.12.004.

Paas, B., & Schneider, C. (2016). A comparison of model performance between ENVI-met and Austal2000 for particulate matter. Atmospheric Environment, 145, 392–404. doi:10.1016/j.atmosenv.2016.09.031.

Simon, H. (2016). Modeling urban microclimate: development, implementation and evaluation of new and improved calculation methods for the urban microclimate model ENVI-met. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Teledyne FLIR (2024). Extech: The World's Sixth Sense. Teledyne FLIR LLC, Oregon, United States. Available online: http://www.extech.com/resources/45170_UM.pdf n (accessed on May 2024).

Wang, H., Cai, Y., Deng, W., Li, C., Dong, Y., Zhou, L., Sun, J., Li, C., Song, B., Zhang, F., & Zhou, G. (2023). The Effects of Tree Canopy Structure and Tree Coverage Ratios on Urban Air Temperature Based on ENVI-Met. Forests, 14(1), 80. doi:10.3390/f14010080.

Song, B., Kim, S. H., Park, G., & Park, K. (2024). Comparison of urban physical environments and thermal properties extracted from unmanned aerial vehicle images and ENVI-met model simulations. Building and Environment, 261. doi:10.1016/j.buildenv.2024.111705.

Taleghani, M., Tenpierik, M., & van den Dobbelsteen, A. (2014). Energy performance and thermal comfort of courtyard/atrium dwellings in the Netherlands in the light of climate change. Renewable Energy, 63, 486–497. doi:10.1016/j.renene.2013.09.028.

Forouzandeh, A. (2018). Numerical modeling validation for the microclimate thermal condition of semi-closed courtyard spaces between buildings. Sustainable Cities and Society, 36, 327–345. doi:10.1016/j.scs.2017.07.025.

The World Bank Group (2023). UAE air temperature: The average monthly air temperature throughout the year in the UAE. Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/country/united-arab-emirates/climate-data-historical (accessed on May 2024).

Khalfan, M., & Sharples, S. (2016). Thermal comfort analysis for the first passivhaus project in Qatar. Proceedings of the SBE16 Dubai, 17-19 January, 2016, Dubai, United Arab Emirates.

Feroz, S. M. (2014). Achieving thermal comfort by applying passive cooling strategies to courtyard houses in Dubai (UAE). Master Thesis, The British University in Dubai, Dubai, United Arab Emirates.

Jin, H., Liu, Z., Jin, Y., Kang, J., & Liu, J. (2017). The effects of residential area building layout on outdoor wind environment at the pedestrian level in severe cold regions of China. Sustainability (Switzerland), 9(12), 2310. doi:10.3390/su9122310.

Kuznik, F., & Virgone, J. (2009). Experimental assessment of a phase change material for wall building use. Applied energy, 86(10), 2038-2046. doi:10.1016/j.apenergy.2009.01.004.

Al-Sallal, K. A. (2010). Daylighting and visual performance: Evaluation of classroom design issues in the UAE. International Journal of Low-Carbon Technologies, 5(4), 201–209. doi:10.1093/ijlct/ctq025.

Shrestha, M., & Rijal, H. B. (2023). Investigation on Summer Thermal Comfort and Passive Thermal Improvements in Naturally Ventilated Nepalese School Buildings. Energies, 16(3), 1251. doi:10.3390/en16031251.

Tablada, A. (2013). Design recommendations for new courtyard buildings in compact historical Centre of Havana. Sustainable Building-Hong Kong Regional Conference Urban Density & Sustainability, 12-13 September, 2013, Crowne Plaza Hong Kong.

Yaşa, E., & Ok, V. (2014). Evaluation of the effects of courtyard building shapes on solar heat gains and energy efficiency according to different climatic regions. Energy and Buildings, 73, 192–199. doi:10.1016/j.enbuild.2013.12.042.

Sharmin, T., & Steemers, K. (2015). Exploring the effect of micro-climate data on building energy performance analysis. 7th International Conference on Sustainable Development in Building and Environment (SuDBE2015), 27-29 July, 2015, Reading, United Kingdom.

Hussain, S., & Oosthuizen, P. H. (2012). Numerical study of buoyancy-driven natural ventilation in a simple three-storey atrium building. International Journal of Sustainable Built Environment, 1(2), 141–157. doi:10.1016/j.ijsbe.2013.07.001.

Gherraz, H., Guechi, I., & Benzaoui, A. (2018). Strategy to Improve Outdoor Thermal Comfort in Open Public Space of a Desert City, Ouargla, Algeria. IOP Conference Series: Earth and Environmental Science, 151(1), 12036. doi:10.1088/1755-1315/151/1/012036.

ENVI-met. (2024) Software, ENVI. ENVI-met, Essen, Germany. Available online: https://www.envi-met.com/software/ (accessed on July 2024).

Langtree , I.C. (2023). Height to Weight Chart for Children: From Infants to Teens. Disable Worlds, Montreal, Canada. Available online: https://www.disabled-world.com/calculators-charts/height-weight-teens.php (accessed on July 2024).

Zhu, J., Feng, J., Lu, J., Chen, Y., Li, W., Lian, P., & Zhao, X. (2023). A review of the influence of courtyard geometry and orientation on microclimate. Building and Environment, 236, 110269. doi:10.1016/j.buildenv.2023.110269.

Diz-Mellado, E., Ruiz-Pardo, Á., Rivera-Gómez, C., Sanchez de la Flor, F. J., & Galán-Marín, C. (2023). Unravelling the impact of courtyard geometry on cooling energy consumption in buildings. Building and Environment, 237, 110349. doi:10.1016/j.buildenv.2023.110349.

Bassal, C., Rabea, M., & Felix, M. (2023). Comparative Study of Mediterranean Courtyard Houses and the Bioclimate Impact on Their Design from Four Axes: Historical, Environmental, Social and Geometry. In Green Building & Construction Economics. Green Building & Construction Economics. doi:10.37256/gbce.4120232263.

Sahnoune, S., & Benhassine, N. (2023). Winter Thermal Comfort of a Typical Courtyard Geometry in a Semi-Arid Climate. Journal of Green Building, 18(1), 95–117. doi:10.3992/jgb.18.1.95.

Wu, R., Fang, X., Liu, S., & Middel, A. (2023). A fast and accurate mean radiant temperature model for courtyards: Evidence from the Keyuan Garden in central Guangdong, China. Building and Environment, 229, 109916. doi:10.1016/j.buildenv.2022.109916.

Diz-Mellado, E., López-Cabeza, V. P., Rivera-Gómez, C., & Galán-Marín, C. (2023). Performance evaluation and users’ perception of courtyards role in indoor areas of mediterranean social housing. Journal of Environmental Management, 345, 118788. doi:10.1016/j.jenvman.2023.118788.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-08-017

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Muna Salameh, Basim Touqan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message