Leak Detection in Urban Hydraulic Systems Using the K-BiLSTM-Monte Carlo Dropout Model
Abstract
Doi: 10.28991/CEJ-2024-010-07-01
Full Text: PDF
Keywords
References
Yang, L., & Zhao, Q. (2022). A BiLSTM Based Pipeline Leak Detection and Disturbance Assisted Localization Method. IEEE Sensors Journal, 22(1), 611–620. doi.:10.1109/jsen.2021.3128816.
Zhang, X., Shi, J., Yang, M., Huang, X., Usmani, A. S., Chen, G., Fu, J., Huang, J., & Li, J. (2023). Real-time pipeline leak detection and localization using an attention-based LSTM approach. Process Safety and Environmental Protection, 174, 460–472. doi:10.1016/j.psep.2023.04.020.
Yang, L., & Zhao, Q. (2020). A Novel PPA Method for Fluid Pipeline Leak Detection Based on OPELM and Bidirectional LSTM. IEEE Access, 8, 107185–107199. doi:10.1109/ACCESS.2020.3000960.
Wang, L., Hu, C., Ma, T., Yang, Z., Guo, W., Mao, Z., Guo, J., & Li, H. (2024). GTFE-Net-BiLSTM-AM: An intelligent feature recognition method for natural gas pipelines. Gas Science and Engineering, 125. doi:10.1016/j.jgsce.2024.205311.
Gao, Y., Piltan, F., & Kim, J.-M. (2022). A Hybrid Leak Localization Approach Using Acoustic Emission for Industrial Pipelines. Sensors, 22(10), 3963. doi:10.3390/s22103963.
Guo, X. L., Yang, K. L., & Guo, Y. X. (2012). Leak detection in pipelines by exclusively frequency domain method. Science China Technological Sciences, 55(3), 743–752. doi:10.1007/s11431-011-4707-3.
Ullah, N., Ahmed, Z., & Kim, J.-M. (2023). Pipeline Leakage Detection Using Acoustic Emission and Machine Learning Algorithms. Sensors, 23(6), 3226. doi:10.3390/s23063226.
Shen, Y., & Cheng, W. (2022). A Tree-Based Machine Learning Method for Pipeline Leakage Detection. Water, 14(18), 2833. doi:10.3390/w14182833.
Acharya, T., Annamalai, A., & Chouikha, M. F. (2023). Efficacy of Bidirectional LSTM Model for Network-Based Anomaly Detection. 2023 IEEE 13th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia. doi:10.1109/iscaie57739.2023.10165336.
Lee, S., & Kim, B. (2023). Machine Learning Model for Leak Detection Using Water Pipeline Vibration Sensor. Sensors (Basel, Switzerland), 23(21), 8935. doi:10.3390/s23218935.
Chumchu, P. (2021). A Leak Detection in Water Pipelines Using Discrete Wavelet Decomposition and Artificial Neural Network. Advances in Signal Processing and Intelligent Recognition Systems, 49–65. doi:10.1007/978-981-16-0425-6_4.
Barandouzi, M. A., Mahinthakumar, G., Ranjithan, R., & Brill, E. D. (2012). Probabilistic Mapping of Water Leakage Characterizations Using a Bayesian Approach. World Environmental and Water Resources Congress 2012. doi:10.1061/9780784412312.326.
Proença, M., Paschoalini, A. T., & Obata, D. H. S. (2023). Prediction of the probabilistic water leak location in underground pipelines using Monte Carlo simulation. Water Practice and Technology, 18(3), 522–535. doi:10.2166/wpt.2023.026.
Zhang, Z., & Lv, M. (2022). Leakage prediction of water supply network based on SAA-SVM model. Journal of Physics: Conference Series, 2202(1), 012014. doi:10.1088/1742-6596/2202/1/012014.
Zhang, P., He, J., Huang, W., Zhang, J., Yuan, Y., Chen, B., Yang, Z., Xiao, Y., Yuan, Y., Wu, C., Cui, H., & Zhang, L. (2023). Water Pipeline Leak Detection Based on a Pseudo-Siamese Convolutional Neural Network: Integrating Handcrafted Features and Deep Representations. Water, 15(6), 1088. doi:10.3390/w15061088.
Abdul, Z. K., & Al-Talabani, A. K. (2022). Mel frequency cepstral coefficient and its applications: A review. IEEE Access, 10, 122136-122158. doi:10.1109/ACCESS.2022.3223444.
Koolagudi, S. G., Rastogi, D., & Rao, K. S. (2012). Identification of language using mel-frequency cepstral coefficients (MFCC). Procedia Engineering, 38, 3391-3398. doi:10.1016/j.proeng.2012.06.392.
Koutsoyiannis, D. (2012). A Monte Carlo approach to water management. Proceedings of the Geophysical Research Abstracts, European Geosciences Union General Assembly, 22-27 April, 2012, Vienna, Austria.
Thu, S., Aung, N., & Ko, K. (2023). A Calibration Technique for Water Flow Sensor YF-S201 1. International Journal of Trend in Research and Development, 5(5), 152–154.
Zahran, A., Hassan Rabie Sakr, L., Shabaka, I., & Mansour, M. (2020). Performance of an Orifice Meter Handling Two-Phase (Gas-Liquid) Flow.(Dept. M). Mansoura Engineering Journal, 45(3), 29–38. doi:10.21608/bfemu.2020.114002.
Wu, Y., Liu, S., Smith, K., & Wang, X. (2018). Using Correlation between Data from Multiple Monitoring Sensors to Detect Bursts in Water Distribution Systems. Journal of Water Resources Planning and Management, 144(2), 04017084. doi:10.1061/(asce)wr.1943-5452.0000870.
Shao, Y., Li, X., Zhang, T., Chu, S., & Liu, X. (2019). Time-series-based leakage detection using multiple pressure sensors in water distribution systems. Sensors (Switzerland), 19(14), 3070. doi:10.3390/s19143070.
Sun, Q., Zhang, Y., Lu, B., & Liu, H. (2022). Flow Measurement-Based Self-Adaptive Line Segment Clustering Model for Leakage Detection in Water Distribution Networks. IEEE Transactions on Instrumentation and Measurement, 71, 1–13,. doi:10.1109/TIM.2022.3165258.
Turkowski, M., Bratek, A., & Ostapkowicz, P. (2016). Uncertainty Analysis as the Tool to Assess the Quality of Leak Detection and Localization Systems. Recent Global Research and Education: Technological Challenges, 469–475, Springer, Cham, Switzerland. doi:10.1007/978-3-319-46490-9_62.
Perez, R., Cuguero, J., Blesa, J., Cuguero, M. A., & Sanz, G. (2016). Uncertainty effect on leak localisation in a DMA. 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol), Barcelona, Spain. doi:10.1109/systol.2016.7739770.
Lu, H., Iseley, T., Behbahani, S., & Fu, L. (2020). Leakage detection techniques for oil and gas pipelines: State-of-the-art. Tunnelling and Underground Space Technology, 98, 103249. doi:10.1016/j.tust.2019.103249.
Kopbayev, A., Khan, F., Yang, M., & Halim, S. Z. (2022). Gas leakage detection using spatial and temporal neural network model. Process Safety and Environmental Protection, 160, 968–975. doi:10.1016/j.psep.2022.03.002.
Amora, D. J. A., Janapin, M. A. V., Calayag, B. A. M., Rioflorido, C. L. P. P., Estur, N. M., & Villegas, P. A. L. (2022). Design of a Household Consumption based Water Leak Detection System Utilizing Machine Learning Algorithm. 2022 IET International Conference on Engineering Technologies and Applications (IET-ICETA), Changhua, Taiwan. doi:10.1109/iet-iceta56553.2022.9971564.
Tornyeviadzi, H. M., Mohammed, H., & Seidu, R. (2023). Robust night flow analysis in water distribution networks: A BiLSTM deep autoencoder approach. Advanced Engineering Informatics, 58, 102135. doi:10.1016/j.aei.2023.102135.
Hao, J., Jin, M., Li, Y., Piao, T., Hu, H., Xi, X., & Chen, J. (2023). Power Data Traceability Mechanism Based on Data Processing Unit. 2023 IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China. doi:10.1109/itaic58329.2023.10408832.
DOI: 10.28991/CEJ-2024-010-07-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Edgar Orlando Ladino
This work is licensed under a Creative Commons Attribution 4.0 International License.