Effectiveness of Different Configurations of Ferrocement Retrofitting for Seismic Protection of Confined Masonry: A Numerical Study
Vol. 10 No. 9 (2024): September
Research Articles
Downloads
Doi: 10.28991/CEJ-2024-010-09-02
Full Text: PDF
Habieb, A. B., Hidayat, M. R., Sutrisno, W., Kandymov, N., & Milani, G. (2024). Effectiveness of Different Configurations of Ferrocement Retrofitting for Seismic Protection of Confined Masonry: A Numerical Study. Civil Engineering Journal, 10(9), 2781–2803. https://doi.org/10.28991/CEJ-2024-010-09-02
[1] Xekalakis, G., Pitilakis, D., Zuccaro, G., & Christou, P. (2023). Parametric Analysis of Horizontal Static and Dynamic Behavior in Different Types of Masonry Structures. Civil Engineering Journal (Iran), 9(10), 2578–2591. doi:10.28991/CEJ-2023-09-10-015.
[2] Debnath, P., Halder, L., & Chandra Dutta, S. (2022). Damage survey and seismic vulnerability assessment of unreinforced masonry structures in low-intensity Ambasa earthquake of northeast India. Structures, 44, 372–388. doi:10.1016/j.istruc.2022.08.005.
[3] Brignola, A., Pampanin, S., & Podestí , S. (2009). Evaluation and control of the in-plane stiffness of timber floors for the performance-based retrofit of URM buildings. Bulletin of the New Zealand Society for Earthquake Engineering, 42(3), 204–221. doi:10.5459/bnzsee.42.3.204-221.
[4] A. Gumilang, S., & Rusli, M. (2021). Seismic performance of earthquake resistant simple residential confined masonry house structure based on permen PUPR No.5 of 2016 specification. IOP Conference Series: Earth and Environmental Science, 708(1), 12085. doi:10.1088/1755-1315/708/1/012085.
[5] Habieb, A. B., Rofiussan, F. A., Irawan, D., Milani, G., Suswanto, B., Widodo, A., & Soegihardjo, H. (2023). Seismic Retrofitting of Indonesian Masonry Using Bamboo Strips: An Experimental Study. Buildings, 13(4), 854. doi:10.3390/buildings13040854.
[6] Fikri, R., Dizhur, D., Walsh, K., & Ingham, J. (2019). Seismic performance of Reinforced Concrete Frame with Masonry Infill buildings in the 2010/2011 Canterbury, New Zealand earthquakes. Bulletin of Earthquake Engineering, 17(2), 737–757. doi:10.1007/s10518-018-0476-8.
[7] Al-Chaar, G., Issa, M., & Sweeney, S. (2002). Behavior of Masonry-Infilled Nonductile Reinforced Concrete Frames. Journal of Structural Engineering, 128(8), 1055–1063. doi:10.1061/(asce)0733-9445(2002)128:8(1055).
[8] Bruneau, M. (1994). State"of"the"Art Report on Seismic Performance of Unreinforced Masonry Buildings. Journal of Structural Engineering, 120(1), 230–251. doi:10.1061/(asce)0733-9445(1994)120:1(230)
[9] Toranzo-Dianderas, L. A., Restrepo, J. I., Carr, A. J., & Mander, J. B. (2004). Rocking confined masonry walls with hysteretic energy dissipators and shake-table validation. 13th World Conf. on Earthquake Engineering, 1-6 August, 2004, Vancouver, Canada.
[10] Marques, R., & Lourenço, P. B. (2019). Structural behaviour and design rules of confined masonry walls: Review and proposals. Construction and Building Materials, 217, 137–155. doi:10.1016/j.conbuildmat.2019.04.266.
[11] Celano, T., Argiento, L. U., Ceroni, F., & Casapulla, C. (2021). In-plane behaviour of masonry walls: Numerical analysis and design formulations. Materials, 14(19), 5780. doi:10.3390/ma14195780.
[12] Sandoval, O. J., Takeuchi, C., Carrillo, J., & Barahona, B. (2021). Performance of unreinforced masonry panels strengthened with mortar overlays reinforced with welded wire mesh and transverse connectors. Construction and Building Materials, 267, 121054. doi:10.1016/j.conbuildmat.2020.121054.
[13] Shermi, C., & Dubey, R. N. (2018). In-plane behaviour of unreinforced masonry panel strengthened with welded wire mesh and mortar. Construction and Building Materials, 178, 195–203. doi:10.1016/j.conbuildmat.2018.04.081.
[14] Banerjee, S., Nayak, S., & Das, S. (2020). Improving the In-Plane Behavior of Brick Masonry Wallet Using PP Band and Steel Wire Mesh. Journal of Materials in Civil Engineering, 32(6). doi:10.1061/(asce)mt.1943-5533.0003159.
[15] Warjri, T., Marbaniang, D. F., & Marthong, C. (2022). In-plane behaviour of masonry walls embedding with steel welded wire mesh overlay with mortar. Journal of Structural Integrity and Maintenance, 7(3), 177–187. doi:10.1080/24705314.2022.2048241.
[16] Debnath, P., Chandra Dutta, S., & Mandal, P. (2023). Lateral behaviour of masonry walls with different types of brick bonds, aspect ratio and strengthening measures by polypropylene bands and wire mesh. Structures, 49, 623–639. doi:10.1016/j.istruc.2023.01.155.
[17] De Santis, S., Casadei, P., De Canio, G., de Felice, G., Malena, M., Mongelli, M., & Roselli, I. (2016). Seismic performance of masonry walls retrofitted with steel reinforced grout. Earthquake Engineering & Structural Dynamics, 45(2), 229–251. doi:10.1002/eqe.2625.
[18] Xin, R., & Ma, P. (2021). Experimental investigation on the in-plane seismic performance of damaged masonry walls repaired with grout-injected ferrocement overlay. Construction and Building Materials, 282, 122565. doi:10.1016/j.conbuildmat.2021.122565.
[19] Saingam, P., Hlaing, H. H., Suwannatrai, R., Ejaz, A., Hussain, Q., Khan, K., & Joyklad, P. (2023). Enhancing the flexural behavior of brick masonry walls with ferrocement overlays and low-cost anchors. Case Studies in Construction Materials, 19, 2558. doi:10.1016/j.cscm.2023.e02558.
[20] Deng, M., & Yang, S. (2020). Experimental and numerical evaluation of confined masonry walls retrofitted with engineered cementitious composites. Engineering Structures, 207, 110249. doi:10.1016/j.engstruct.2020.110249.
[21] Umair, S. M., Numada, M., Amin, M. N., & Meguro, K. (2015). Fiber reinforced polymer and polypropylene composite retrofitting technique for masonry structures. Polymers, 7(5), 963–984. doi:10.3390/polym7050963.
[22] Jang, H. S., An, J. H., Song, J. H., Son, S. H., Hong, Y. S., & Eun, H. C. (2022). Out-of-Plane Strengthening of Unreinforced Masonry Walls by Glass Fiber-Reinforced Polyurea. Civil Engineering Journal (Iran), 8(1), 145–154. doi:10.28991/CEJ-2022-08-01-011.
[23] Chourasia, A., Singhal, S., & Parashar, J. (2019). Experimental investigation of seismic strengthening technique for confined masonry buildings. Journal of Building Engineering, 25, 100834. doi:10.1016/j.jobe.2019.100834.
[24] Habieb, A. B., Valente, M., & Milani, G. (2019). Hybrid seismic base isolation of a historical masonry church using unbonded fiber reinforced elastomeric isolators and shape memory alloy wires. Engineering Structures, 196, 109281. doi:10.1016/j.engstruct.2019.109281.
[25] Boni, C., & Royer-Carfagni, G. (2023). Transparent hybrid glass-steel bracing to improve the seismic capacity of historic buildings with colonnades. Engineering Structures, 278, 115522. doi:10.1016/j.engstruct.2022.115522.
[26] Li, J., Wu, C., Hao, H., Su, Y., & Li, Z. X. (2017). A study of concrete slabs with steel wire mesh reinforcement under close-in explosive loads. International Journal of Impact Engineering, 110, 242–254. doi:10.1016/j.ijimpeng.2017.01.016.
[27] Garg, A., Sageman-Furnas, A. O., Deng, B., Yue, Y., Grinspun, E., Pauly, M., & Wardetzky, M. (2014). Wire mesh design. ACM Transactions on Graphics, 33(4). doi:10.1145/2601097.2601106.
[28] Miah, M. J., Miah, M. S., Alam, W. B., Lo Monte, F., & Li, Y. (2019). Strengthening of RC beams by ferrocement made with unconventional concrete. Magazine of Civil Engineering, 89(5), 94–105. doi:10.18720/MCE.89.8.
[29] Scacco, J., Milani, G., & Lourenço, P. B. (2021). A micro-modeling approach for the prediction of TRM bond performance on curved masonry substrates. Composite Structures, 256, 113065. doi:10.1016/j.compstruct.2020.113065.
[30] Anas, S. M., Alam, M., & Umair, M. (2022). Behavior and damage assessment of monolithic and non-monolithic braced masonry walls subjected to blast loadings using a detailed micro-modeling approach. International Journal of Masonry Research and Innovation.
[31] Rotunno, T., Fagone, M., Ranocchiai, G., & Grande, E. (2022). Micro-mechanical FE modelling and constitutive parameters calibration of masonry panels strengthened with CFRP sheets. Composite Structures, 285, 115248. doi:10.1016/j.compstruct.2022.115248.
[32] Moradi, N., Yazdani, M., Janbozorgi, F., & Hashemi, S. J. (2024). In-plane seismic performance of historical masonry walls with various brick bond patterns using micro-modeling approach. Asian Journal of Civil Engineering, 25(6), 4863–4876. doi:10.1007/s42107-024-01085-x.
[33] Dhanasekar, M., & Haider, W. (2008). Explicit finite element analysis of lightly reinforced masonry shear walls. Computers and Structures, 86(1–2), 15–26. doi:10.1016/j.compstruc.2007.06.006.
[34] Agnihotri, P., Singhal, V., & Rai, D. C. (2013). Effect of in-plane damage on out-of-plane strength of unreinforced masonry walls. Engineering Structures, 57, 1–11. doi:10.1016/j.engstruct.2013.09.004.
[35] Minaie, E., Moon, F. L., & Hamid, A. A. (2014). Nonlinear finite element modeling of reinforced masonry shear walls for bidirectional loading response. Finite Elements in Analysis and Design, 84, 44–53. doi:10.1016/j.finel.2014.02.001.
[36] Alforno, M., Monaco, A., Venuti, F., & Calderini, C. (2021). Validation of Simplified Micro-models for the Static Analysis of Masonry Arches and Vaults. International Journal of Architectural Heritage, 15(8), 1196–1212. doi:10.1080/15583058.2020.1808911.
[37] Maccarini, H., Vasconcelos, G., Rodrigues, H., Ortega, J., & Lourenço, P. B. (2018). Out-of-plane behavior of stone masonry walls: Experimental and numerical analysis. Construction and Building Materials, 179, 430–452. doi:10.1016/j.conbuildmat.2018.05.216.
[38] Tiberti, S., Acito, M., & Milani, G. (2016). Comprehensive FE numerical insight into Finale Emilia Castle behavior under 2012 Emilia Romagna seismic sequence: Damage causes and seismic vulnerability mitigation hypothesis. Engineering Structures, 117, 397–421. doi:10.1016/j.engstruct.2016.02.048.
[39] Habieb, A. B., Valente, M., & Milani, G. (2019). Base seismic isolation of a historical masonry church using fiber reinforced elastomeric isolators. Soil Dynamics and Earthquake Engineering, 120, 127–145. doi:10.1016/j.soildyn.2019.01.022.
[40] Shehu, R. (2021). Implementation of Pushover Analysis for Seismic Assessment of Masonry Towers: Issues and Practical Recommendations. Buildings, 11(2), 71. doi:10.3390/buildings11020071.
[41] Guo, K., Habieb, A. B., & Milani, G. (2024). Simulation for a Low-Rise Masonry House Using Seismic Isolator with and Without S-shaped Steel Dampers. Recent Advances in Structural Health Monitoring and Engineering Structures. SHM&ES 2023, Lecture Notes in Civil Engineering, 460. Springer, Singapore. doi:10.1007/978-981-97-0399-9_9.
[42] Park, K., Paulino, G. H., & Roesler, J. R. (2008). Determination of the kink point in the bilinear softening model for concrete. Engineering Fracture Mechanics, 75(13), 3806–3818. doi:10.1016/j.engfracmech.2008.02.002.
[43] GB 50003-2011. (2011). Code for Design of Masonry Structures. China Standard Press, Beijing, China.
[44] GB 50010-2010. (2010). Code for Design of Concrete Structures. China Standard Press, Beijing, China.
[45] Boen, T., Imai, H., Ismail, F., Hanazato, T., & Lenny. (2015). Brief report of shaking table test on masonry building strengthened with ferrocement layers. Journal of Disaster Research, 10(3), 551–557. doi:10.20965/jdr.2015.p0551.
[2] Debnath, P., Halder, L., & Chandra Dutta, S. (2022). Damage survey and seismic vulnerability assessment of unreinforced masonry structures in low-intensity Ambasa earthquake of northeast India. Structures, 44, 372–388. doi:10.1016/j.istruc.2022.08.005.
[3] Brignola, A., Pampanin, S., & Podestí , S. (2009). Evaluation and control of the in-plane stiffness of timber floors for the performance-based retrofit of URM buildings. Bulletin of the New Zealand Society for Earthquake Engineering, 42(3), 204–221. doi:10.5459/bnzsee.42.3.204-221.
[4] A. Gumilang, S., & Rusli, M. (2021). Seismic performance of earthquake resistant simple residential confined masonry house structure based on permen PUPR No.5 of 2016 specification. IOP Conference Series: Earth and Environmental Science, 708(1), 12085. doi:10.1088/1755-1315/708/1/012085.
[5] Habieb, A. B., Rofiussan, F. A., Irawan, D., Milani, G., Suswanto, B., Widodo, A., & Soegihardjo, H. (2023). Seismic Retrofitting of Indonesian Masonry Using Bamboo Strips: An Experimental Study. Buildings, 13(4), 854. doi:10.3390/buildings13040854.
[6] Fikri, R., Dizhur, D., Walsh, K., & Ingham, J. (2019). Seismic performance of Reinforced Concrete Frame with Masonry Infill buildings in the 2010/2011 Canterbury, New Zealand earthquakes. Bulletin of Earthquake Engineering, 17(2), 737–757. doi:10.1007/s10518-018-0476-8.
[7] Al-Chaar, G., Issa, M., & Sweeney, S. (2002). Behavior of Masonry-Infilled Nonductile Reinforced Concrete Frames. Journal of Structural Engineering, 128(8), 1055–1063. doi:10.1061/(asce)0733-9445(2002)128:8(1055).
[8] Bruneau, M. (1994). State"of"the"Art Report on Seismic Performance of Unreinforced Masonry Buildings. Journal of Structural Engineering, 120(1), 230–251. doi:10.1061/(asce)0733-9445(1994)120:1(230)
[9] Toranzo-Dianderas, L. A., Restrepo, J. I., Carr, A. J., & Mander, J. B. (2004). Rocking confined masonry walls with hysteretic energy dissipators and shake-table validation. 13th World Conf. on Earthquake Engineering, 1-6 August, 2004, Vancouver, Canada.
[10] Marques, R., & Lourenço, P. B. (2019). Structural behaviour and design rules of confined masonry walls: Review and proposals. Construction and Building Materials, 217, 137–155. doi:10.1016/j.conbuildmat.2019.04.266.
[11] Celano, T., Argiento, L. U., Ceroni, F., & Casapulla, C. (2021). In-plane behaviour of masonry walls: Numerical analysis and design formulations. Materials, 14(19), 5780. doi:10.3390/ma14195780.
[12] Sandoval, O. J., Takeuchi, C., Carrillo, J., & Barahona, B. (2021). Performance of unreinforced masonry panels strengthened with mortar overlays reinforced with welded wire mesh and transverse connectors. Construction and Building Materials, 267, 121054. doi:10.1016/j.conbuildmat.2020.121054.
[13] Shermi, C., & Dubey, R. N. (2018). In-plane behaviour of unreinforced masonry panel strengthened with welded wire mesh and mortar. Construction and Building Materials, 178, 195–203. doi:10.1016/j.conbuildmat.2018.04.081.
[14] Banerjee, S., Nayak, S., & Das, S. (2020). Improving the In-Plane Behavior of Brick Masonry Wallet Using PP Band and Steel Wire Mesh. Journal of Materials in Civil Engineering, 32(6). doi:10.1061/(asce)mt.1943-5533.0003159.
[15] Warjri, T., Marbaniang, D. F., & Marthong, C. (2022). In-plane behaviour of masonry walls embedding with steel welded wire mesh overlay with mortar. Journal of Structural Integrity and Maintenance, 7(3), 177–187. doi:10.1080/24705314.2022.2048241.
[16] Debnath, P., Chandra Dutta, S., & Mandal, P. (2023). Lateral behaviour of masonry walls with different types of brick bonds, aspect ratio and strengthening measures by polypropylene bands and wire mesh. Structures, 49, 623–639. doi:10.1016/j.istruc.2023.01.155.
[17] De Santis, S., Casadei, P., De Canio, G., de Felice, G., Malena, M., Mongelli, M., & Roselli, I. (2016). Seismic performance of masonry walls retrofitted with steel reinforced grout. Earthquake Engineering & Structural Dynamics, 45(2), 229–251. doi:10.1002/eqe.2625.
[18] Xin, R., & Ma, P. (2021). Experimental investigation on the in-plane seismic performance of damaged masonry walls repaired with grout-injected ferrocement overlay. Construction and Building Materials, 282, 122565. doi:10.1016/j.conbuildmat.2021.122565.
[19] Saingam, P., Hlaing, H. H., Suwannatrai, R., Ejaz, A., Hussain, Q., Khan, K., & Joyklad, P. (2023). Enhancing the flexural behavior of brick masonry walls with ferrocement overlays and low-cost anchors. Case Studies in Construction Materials, 19, 2558. doi:10.1016/j.cscm.2023.e02558.
[20] Deng, M., & Yang, S. (2020). Experimental and numerical evaluation of confined masonry walls retrofitted with engineered cementitious composites. Engineering Structures, 207, 110249. doi:10.1016/j.engstruct.2020.110249.
[21] Umair, S. M., Numada, M., Amin, M. N., & Meguro, K. (2015). Fiber reinforced polymer and polypropylene composite retrofitting technique for masonry structures. Polymers, 7(5), 963–984. doi:10.3390/polym7050963.
[22] Jang, H. S., An, J. H., Song, J. H., Son, S. H., Hong, Y. S., & Eun, H. C. (2022). Out-of-Plane Strengthening of Unreinforced Masonry Walls by Glass Fiber-Reinforced Polyurea. Civil Engineering Journal (Iran), 8(1), 145–154. doi:10.28991/CEJ-2022-08-01-011.
[23] Chourasia, A., Singhal, S., & Parashar, J. (2019). Experimental investigation of seismic strengthening technique for confined masonry buildings. Journal of Building Engineering, 25, 100834. doi:10.1016/j.jobe.2019.100834.
[24] Habieb, A. B., Valente, M., & Milani, G. (2019). Hybrid seismic base isolation of a historical masonry church using unbonded fiber reinforced elastomeric isolators and shape memory alloy wires. Engineering Structures, 196, 109281. doi:10.1016/j.engstruct.2019.109281.
[25] Boni, C., & Royer-Carfagni, G. (2023). Transparent hybrid glass-steel bracing to improve the seismic capacity of historic buildings with colonnades. Engineering Structures, 278, 115522. doi:10.1016/j.engstruct.2022.115522.
[26] Li, J., Wu, C., Hao, H., Su, Y., & Li, Z. X. (2017). A study of concrete slabs with steel wire mesh reinforcement under close-in explosive loads. International Journal of Impact Engineering, 110, 242–254. doi:10.1016/j.ijimpeng.2017.01.016.
[27] Garg, A., Sageman-Furnas, A. O., Deng, B., Yue, Y., Grinspun, E., Pauly, M., & Wardetzky, M. (2014). Wire mesh design. ACM Transactions on Graphics, 33(4). doi:10.1145/2601097.2601106.
[28] Miah, M. J., Miah, M. S., Alam, W. B., Lo Monte, F., & Li, Y. (2019). Strengthening of RC beams by ferrocement made with unconventional concrete. Magazine of Civil Engineering, 89(5), 94–105. doi:10.18720/MCE.89.8.
[29] Scacco, J., Milani, G., & Lourenço, P. B. (2021). A micro-modeling approach for the prediction of TRM bond performance on curved masonry substrates. Composite Structures, 256, 113065. doi:10.1016/j.compstruct.2020.113065.
[30] Anas, S. M., Alam, M., & Umair, M. (2022). Behavior and damage assessment of monolithic and non-monolithic braced masonry walls subjected to blast loadings using a detailed micro-modeling approach. International Journal of Masonry Research and Innovation.
[31] Rotunno, T., Fagone, M., Ranocchiai, G., & Grande, E. (2022). Micro-mechanical FE modelling and constitutive parameters calibration of masonry panels strengthened with CFRP sheets. Composite Structures, 285, 115248. doi:10.1016/j.compstruct.2022.115248.
[32] Moradi, N., Yazdani, M., Janbozorgi, F., & Hashemi, S. J. (2024). In-plane seismic performance of historical masonry walls with various brick bond patterns using micro-modeling approach. Asian Journal of Civil Engineering, 25(6), 4863–4876. doi:10.1007/s42107-024-01085-x.
[33] Dhanasekar, M., & Haider, W. (2008). Explicit finite element analysis of lightly reinforced masonry shear walls. Computers and Structures, 86(1–2), 15–26. doi:10.1016/j.compstruc.2007.06.006.
[34] Agnihotri, P., Singhal, V., & Rai, D. C. (2013). Effect of in-plane damage on out-of-plane strength of unreinforced masonry walls. Engineering Structures, 57, 1–11. doi:10.1016/j.engstruct.2013.09.004.
[35] Minaie, E., Moon, F. L., & Hamid, A. A. (2014). Nonlinear finite element modeling of reinforced masonry shear walls for bidirectional loading response. Finite Elements in Analysis and Design, 84, 44–53. doi:10.1016/j.finel.2014.02.001.
[36] Alforno, M., Monaco, A., Venuti, F., & Calderini, C. (2021). Validation of Simplified Micro-models for the Static Analysis of Masonry Arches and Vaults. International Journal of Architectural Heritage, 15(8), 1196–1212. doi:10.1080/15583058.2020.1808911.
[37] Maccarini, H., Vasconcelos, G., Rodrigues, H., Ortega, J., & Lourenço, P. B. (2018). Out-of-plane behavior of stone masonry walls: Experimental and numerical analysis. Construction and Building Materials, 179, 430–452. doi:10.1016/j.conbuildmat.2018.05.216.
[38] Tiberti, S., Acito, M., & Milani, G. (2016). Comprehensive FE numerical insight into Finale Emilia Castle behavior under 2012 Emilia Romagna seismic sequence: Damage causes and seismic vulnerability mitigation hypothesis. Engineering Structures, 117, 397–421. doi:10.1016/j.engstruct.2016.02.048.
[39] Habieb, A. B., Valente, M., & Milani, G. (2019). Base seismic isolation of a historical masonry church using fiber reinforced elastomeric isolators. Soil Dynamics and Earthquake Engineering, 120, 127–145. doi:10.1016/j.soildyn.2019.01.022.
[40] Shehu, R. (2021). Implementation of Pushover Analysis for Seismic Assessment of Masonry Towers: Issues and Practical Recommendations. Buildings, 11(2), 71. doi:10.3390/buildings11020071.
[41] Guo, K., Habieb, A. B., & Milani, G. (2024). Simulation for a Low-Rise Masonry House Using Seismic Isolator with and Without S-shaped Steel Dampers. Recent Advances in Structural Health Monitoring and Engineering Structures. SHM&ES 2023, Lecture Notes in Civil Engineering, 460. Springer, Singapore. doi:10.1007/978-981-97-0399-9_9.
[42] Park, K., Paulino, G. H., & Roesler, J. R. (2008). Determination of the kink point in the bilinear softening model for concrete. Engineering Fracture Mechanics, 75(13), 3806–3818. doi:10.1016/j.engfracmech.2008.02.002.
[43] GB 50003-2011. (2011). Code for Design of Masonry Structures. China Standard Press, Beijing, China.
[44] GB 50010-2010. (2010). Code for Design of Concrete Structures. China Standard Press, Beijing, China.
[45] Boen, T., Imai, H., Ismail, F., Hanazato, T., & Lenny. (2015). Brief report of shaking table test on masonry building strengthened with ferrocement layers. Journal of Disaster Research, 10(3), 551–557. doi:10.20965/jdr.2015.p0551.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
