Adaptive Seismic Upgrading of Isolated Bridges with C-Gapped Devices: Model Testing
Downloads
Doi: 10.28991/CEJ-2024-010-09-01
Full Text: PDF
Downloads
[2] M.C. Kunde, & R.S. Jangid. (2003). Seismic behavior of isolated bridges: A-state-of-the-art review. Electronic Journal of Structural Engineering, 3, 140–170. doi:10.56748/ejse.335.
[3] Turkington, D. H., Carr, A. J., Cooke, N., & Moss, P. J. (1989). Seismic Design of Bridges on Lead"Rubber Bearings. Journal of Structural Engineering, 115(12), 3000–3016. doi:10.1061/(asce)0733-9445(1989)115:12(3000).
[4] Robinson, W. H. (1982). Lead"rubber hysteretic bearings suitable for protecting structures during earthquakes. Earthquake Engineering & Structural Dynamics, 10(4), 593–604. doi:10.1002/eqe.4290100408.
[5] Dolce, M., Cardone, D., & Palermo, G. (2007). Seismic isolation of bridges using isolation systems based on flat sliding bearings. Bulletin of Earthquake Engineering, 5(4), 491–509. doi:10.1007/s10518-007-9044-3.
[6] Iemura, H., Taghikhany, T., & Jain, S. K. (2007). Optimum design of resilient sliding isolation system for seismic protection of equipments. Bulletin of Earthquake Engineering, 5(1), 85–103. doi:10.1007/s10518-006-9010-5.
[7] Kartoum, A., Constantinou, M. C., & Reinhorn, A. M. (1992). Sliding isolation system for bridges: analytical study. Earthquake Spectra, 8(3), 345–372. doi:10.1193/1.1585685.
[8] Wang, B., Han, Q., & Du, X. (2016). Seismic response analysis of isolated bridge with friction pendulum bearings. Tumu Gongcheng Xuebao/China Civil Engineering Journal, 49, 85–90. doi:10.1002/(sici)1096-9845(199810)27:10.
[9] Zayas, V. A., Low, S. S., & Mahin, S. A. (1990). A Simple Pendulum Technique for Achieving Seismic Isolation. Earthquake Spectra, 6(2), 317–333. doi:10.1193/1.1585573.
[10] Constantinou, M. C., Kartoum, A., Reinhorn, A. M., & Bradford, P. (1992). Sliding isolation system for bridges: experimental study. Earthquake Spectra, 8(3), 321–344. doi:10.1193/1.1585684.
[11] Xiang, N., Yang, H., & Li, J. (2019). Performance of an isolated simply supported bridge crossing fault rupture: Shake table test. Earthquake and Structures, 16(6), 665–677. doi:10.12989/eas.2019.16.6.665.
[12] Skinner, R. I., Kelly, J. M., & Heine, A. J. (1974). Hysteretic dampers for earthquake"resistant structures. Earthquake Engineering & Structural Dynamics, 3(3), 287–296. doi:10.1002/eqe.4290030307.
[13] Guan, Z., Li, J., & Xu, Y. (2010). Performance Test of Energy Dissipation Bearing and Its Application in Seismic Control of a Long-Span Bridge. Journal of Bridge Engineering, 15(6), 622–630. doi:10.1061/(asce)be.1943-5592.0000099.
[14] Javanmardi, A., Ibrahim, Z., Ghaedi, K., Benisi Ghadim, H., & Hanif, M. U. (2020). State-of-the-Art Review of Metallic Dampers: Testing, Development and Implementation. Archives of Computational Methods in Engineering, 27(2), 455–478. doi:10.1007/s11831-019-09329-9.
[15] Ene, D., Yamada, S., Jiao, Y., Kishiki, S., & Konishi, Y. (2017). Reliability of U-shaped steel dampers used in base-isolated structures subjected to biaxial excitation. Earthquake Engineering and Structural Dynamics, 46(4), 621–639. doi:10.1002/eqe.2806.
[16] Oh, S. H., Song, S. H., Lee, S. H., & Kim, H. J. (2013). Experimental study of seismic performance of base-isolated frames with U-shaped hysteretic energy-dissipating devices. Engineering Structures, 56, 2014–2027. doi:10.1016/j.engstruct.2013.08.011.
[17] Jiao, Y., Kishiki, S., Yamada, S., Ene, D., Konishi, Y., Hoashi, Y., & Terashima, M. (2015). Low cyclic fatigue and hysteretic behavior of U-shaped steel dampers for seismically isolated buildings under dynamic cyclic loadings. Earthquake Engineering and Structural Dynamics, 44(10), 1523–1538. doi:10.1002/eqe.2533.
[18] Bajaj, M., & Agrawal, P. (2023). A State-of-the-Art Review on Metallic Dampers Based on Different Yielding Mechanism. Lecture Notes in Civil Engineering, 329 LNCE, 569–586. doi:10.1007/978-981-99-1608-5_41.
[19] Zhang, C., Yu, T., Wang, B., Huang, W., Zhong, G., & Zhao, F. (2024). Experimental and numerical investigations of steel U-shaped dampers under vertical loadings for seismic mitigation. Soil Dynamics and Earthquake Engineering, 179, 108571. doi:10.1016/j.soildyn.2024.108571.
[20] Ghaedi, K., Ibrahim, Z., & Javanmardi, A. (2018). A new metallic bar damper device for seismic energy dissipation of civil structures. IOP Conference Series: Materials Science and Engineering, 431(12), 122009. doi:10.1088/1757-899X/431/12/122009.
[21] Tyler, R. G. (1978). Tapered Steel Energy Dissipators for Earthquake Resistant Structures. Bulletin of the New Zealand National Society for Earthquake Engineering, 11(4), 282–294. doi:10.5459/bnzsee.11.4.282-294.
[22] Briones, B., & de la Llera, J. C. (2014). Analysis, design and testing of an hourglass-shaped copper energy dissipation device. Engineering Structures, 79, 309–321. doi:10.1016/j.engstruct.2014.07.006.
[23] Sepúlveda, J., Boroschek, R., Herrera, R., Moroni, O., & Sarrazin, M. (2008). Steel beam-column connection using copper-based shape memory alloy dampers. Journal of Constructional Steel Research, 64(4), 429–435. doi:10.1016/j.jcsr.2007.09.002.
[24] Ghandil, M., Riahi, H. T., & Behnamfar, F. (2022). Introduction of a new metallic-yielding pistonic damper for seismic control of structures. Journal of Constructional Steel Research, 194. doi:10.1016/j.jcsr.2022.107299.
[25] Jankowski, R., Seleemah, A., El-Khoriby, S., & Elwardany, H. (2015). Experimental study on pounding between structures during damaging earthquakes. Key Engineering Materials, 627, 249–252. doi:10.4028/www.scientific.net/KEM.627.249.
[26] Tubaldi, E., Mitoulis, S. A., Ahmadi, H., & Muhr, A. (2016). A parametric study on the axial behaviour of elastomeric isolators in multi-span bridges subjected to horizontal seismic excitations. Bulletin of Earthquake Engineering, 14(4), 1285–1310. doi:10.1007/s10518-016-9876-9.
[27] Serino, G., & Occhiuzzi, A. (2003). A semi-active oleodynamic damper for earthquake control. Part 1: Design, manufacturing and experimental analysis of the device. Bulletin of Earthquake Engineering, 1(2), 241–268. doi:10.1023/A:1026336809041.
[28] Kataria, N. P., & Jangid, R. S. (2016). Seismic protection of the horizontally curved bridge with semi-active variable stiffness damper and isolation system. Advances in Structural Engineering, 19(7), 1103–1117. doi:10.1177/1369433216634477.
[29] Mayes, R. L., Buckle, I. G., Kelly, T. E., & Jones, L. R. (1992). AASHTO Seismic Isolation Design Requirements for Highway Bridges. Journal of Structural Engineering, 118(1), 284–304. doi:10.1061/(asce)0733-9445(1992)118:1(284).
[30] Unjoh, S., & Ohsumi, M. (1998). Earthquake Response Characteristics of Super-Multi-Span Continuous MEnshin (Seismic Isolation) Bridges and Seismic Design. Journal of Earthquake Technology, 35, 95–104.
[31] Lee Marsh, M., Buckle, I. G., & Kavazanjian, E. (2014). LRFD Seismic Analysis and Design of Bridges - Reference Manual (Issue FHWA-NHI-15-004). National Highway Institute, U.S. Department of Transportation, New Jersey, United States.
[32] Candeias, P., Campos Costa, A., & Coelho, E. (2004). Shaking table tests of 1:3 reduced scale models of four story unreinforced masonry buildings. 13th World Conference on Earthquake Engineering, August 2004, 2199.
[33] Ristic, D., & Ristic, J. (2012). New integrated 2G3 response modification method for seismic upgrading of new and existing bridges. 15th World Conference on Earthquake Engineering (WCEE), Lisbon, Portugal.
[34] Ristic, J. (2016). Modern technology for seismic protection of bridges with application of new seismic response modification system. Doctoral Dissertation, University Ss. Cyril and Methodius, Skopje, Macedonia.
[35] Tian, L., Fu, Z., Pan, H., Ma, R., & Liu, Y. (2019). Experimental and numerical study on the collapse failure of long-span transmission tower-line systems subjected to extremely severe earthquakes. Earthquake and Structures, 16(5), 513–522. doi:10.12989/eas.2019.16.5.513.
[36] Misini, M., Ristić, J., Ristić, D., Guri, Z., & Pllana, N. (2019). Seismic upgrading of isolated bridges with SF-ED devices: Analytical study validated by shaking table testing. Gradjevinar, 71(4), 255–272. doi:10.14256/JCE.2274.2017.
[37] Ristic, J., Misini, M., Ristic, D., Guri, Z., & Pllana, N. (2018). Seismic upgrading of bridges isolated with SF-ED devices: Large-scale model testing on shaking table. Journal of the Croatian Association of Civil Engineers, 70(6), 463–485. doi:10.14256/jce.2147.2017.
[38] Ristic, J., Brujic, Z., Ristic, D., Folic, R., & Boskovic, M. (2021). Upgrading of isolated bridges with space-bar energy-dissipation devices: Shaking table test. Advances in Structural Engineering, 24(13), 2948–2965. doi:10.1177/13694332211013918.
[39] Zlatkov, D., Ristić, D., Zorić, A., Ristić, J., Mladenović, B., Petrović, н., & Trajković-Milenković, M. (2022). Experimental and Numerical Study of Energy Dissipation Components of a New Metallic Damper Device. Journal of Vibration Engineering and Technologies, 10(5), 1809–1829. doi:10.1007/s42417-022-00485-0.
[40] Behrami, R., Ristic, J., Ristic, D., & Hristovski, V. (2021). The New Uniform Vf -Energy Dissipation Device: Refined Modelling. World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures Proceedings, 1140-1151. doi:10.37153/2686-7974-2019-16-1140-1151.
[41] UNCRD. (1995). Comprehensive Study of the Great Hanshin Earthquake. UNCRD Research Report Series, 12, 74–75.
[42] Lin, C. C. J., Hung, H. H., Liu, K. Y., & Chai, J. F. (2010). Reconnaissance observation on bridge damage caused by the 2008 Wenchuan (China) earthquake. Earthquake Spectra, 26(4), 1057–1083. doi:10.1193/1.3479947.
[43] Guo, W., Gao, X., Hu, P., Hu, Y., Zhai, Z., Bu, D., & Jiang, L. (2020). Seismic damage features of high-speed railway simply supported bridge–track system under near-fault earthquake. Advances in Structural Engineering, 23(8), 1573–1586. doi:10.1177/1369433219896166.
[44] UNCRD. (1995). Comprehensive study of the great Hanshin earthquake. UNCRD research report series No. 12. United Nations Centre for Regional Development (UNCRD), Nagoya, Japan.
[45] Yuan, W., Feng, R., & Dang, X. (2018). Typical earthquake damage and seismic isolation technology for bridges subjected to near-fault ground motions. Proceedings - 2018 International Conference on Engineering Simulation and Intelligent Control, ESAIC 2018, 314–318. doi:10.1109/ESAIC.2018.00079.
[46] Mya Nan Aye, Kasai, A., & Shigeishi, M. (2018). An Investigation of Damage Mechanism Induced by Earthquake in a Plate Girder Bridge Based on Seismic Response Analysis: Case Study of Tawarayama Bridge under the 2016 Kumamoto Earthquake. Advances in Civil Engineering, 2018, 9293623. doi:10.1155/2018/9293623.
[47] Wang, S., Yuan, Y., Tan, P., Li, Y., Zheng, W., & Zhang, D. (2024). Experimental study and numerical model of a new passive adaptive isolation bearing. Engineering Structures, 308, 118044. doi:10.1016/j.engstruct.2024.118044.
[48] Zhou, W., Huang, C., Li, X., Liu, D., Zhang, Y., & Fang, S. (2024). Analysis of shock absorption performance of a new staggered story isolation structure under far-field long-period ground motions. Soil Dynamics and Earthquake Engineering, 177. doi:10.1016/j.soildyn.2023.108411.
[49] Lee, G. C., Kitane, Y., & Buckle, I. G. (2001). Literature Review of the Observed Performance of Seismically Isolated Bridges. Research Progress and Accomplishments: Multidisciplinary Center for Earthquake Engineering Research, 51–62.
[50] Ghasemi, H., Cooper, J. D., Imbsen, R., Piskin, H., Inal, F., & Tiras, A. (1999). The November 1999 Duzce Earthquake: Post-Earthquake Investigation of the Structures on the TEM. Publication, FHWARD-00-146, 1–26.
[51] Erdik, M. (2001). Report on 1999 Kocaeli and Düzce (Turkey) Earthquakes. Structural Control for Civil and Infrastructure Engineering, Proceedings of the 3rd International Workshop on Structural Control, 149–186. doi:10.1142/9789812811707_0018.
[52] Li, X., & Shi, Y. (2019). Seismic Design of Bridges against Near-Fault Ground Motions Using Combined Seismic Isolation and Restraining Systems of LRBs and CDRs. Shock and Vibration, 2019, 4067915. doi:10.1155/2019/4067915.
[53] Ristic, D. (1988). Nonlinear behavior and stress-strain based modeling of reinforced concrete structures under earthquake induced bending and varying axial loads. School of Civil Engineering, Kyoto University, Kyoto, Japan.
[54] Wan, W., Bo, J., Qi, W., Peng, D., Li, Q., & Duan, Y. (2023). Analysis of Peak Ground Acceleration Attenuation Characteristics in the Pazarcik Earthquake, Türkiye. Applied Sciences (Switzerland), 13(20), 11436. doi:10.3390/app132011436.
[55] ANSYS (2017). ANSYS Mechanical: Finite Element Analysis (FEA) software, ANSYS, Inc., Pennsylvania, United States.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.