Durability of Fiber-Reinforced Polymer (FRP) Bars: Progress, Innovations and Challenges Based on Bibliometric Analysis
Downloads
Doi: 10.28991/CEJ-SP2024-010-09
Full Text: PDF
[2] Elgabbas, F., Ahmed, E. A., & Benmokrane, B. (2015). Physical and mechanical characteristics of new basalt-FRP bars for reinforcing concrete structures. Construction and Building Materials, 95, 623–635. doi:10.1016/j.conbuildmat.2015.07.036.
[3] Feng, G., Ou, Y., Rahman, M. Z., Zhou, L., Zhao, H., Chen, Q., Mao, D., & Zhu, D. (2023). Improving corrosion resistance of BFRP bars by coating CNTs modified resin in simulated pore solution of seawater sea sand concrete. Construction and Building Materials, 392(131945). doi:10.1016/j.conbuildmat.2023.131945.
[4] Benmokrane, B., Hassan, M., Robert, M., Vijay, P. V., & Manalo, A. (2020). Effect of Different Constituent Fiber, Resin, and Sizing Combinations on Alkaline Resistance of Basalt, Carbon, and Glass FRP Bars. Journal of Composites for Construction, 24(3), 04020010. doi:10.1061/(asce)cc.1943-5614.0001009.
[5] Rolland, A., Benzarti, K., Quiertant, M., & Chataigner, S. (2021). Accelerated aging behavior in alkaline environments of GFRP reinforcing bars and their bond with concrete. Materials, 14(19), 5700. doi:10.3390/ma14195700.
[6] Sun, Y., Jin, Z., Zhang, X., & Pang, B. (2023). Degradation of GFRP bars in alkaline environments: An experimental and molecular dynamics study. Journal of Building Engineering, 77. doi:10.1016/j.jobe.2023.107449.
[7] Sun, Y., Jin, Z., Zhang, X., Zhang, S., He, S., & Pang, B. (2023). Initial stage degradation of GFRP bars based on functional group ratio change using FTIR in high temperature and alkaline solution. Journal of Building Engineering, 68. doi:10.1016/j.jobe.2023.106190.
[8] Benmokrane, B., Ali, A. H., Mohamed, H. M., ElSafty, A., & Manalo, A. (2017). Laboratory assessment and durability performance of vinyl-ester, polyester, and epoxy glass-FRP bars for concrete structures. Composites Part B: Engineering, 114, 163–174. doi:10.1016/j.compositesb.2017.02.002.
[9] Benmokrane, B., Mohamed, H. M., Manalo, A., & Cousin, P. (2017). Evaluation of Physical and Durability Characteristics of New Headed Glass Fiber–Reinforced Polymer Bars for Concrete Structures. Journal of Composites for Construction, 21(2), 04016081. doi:10.1061/(asce)cc.1943-5614.0000738.
[10] Feng, G., Zhu, D., Guo, S., Rahman, M. Z., Jin, Z., & Shi, C. (2022). A review on mechanical properties and deterioration mechanisms of FRP bars under severe environmental and loading conditions. Cement and Concrete Composites, 134, 104758. doi:10.1016/j.cemconcomp.2022.104758.
[11] Benmokrane, B., Elgabbas, F., Ahmed, E. A., & Cousin, P. (2015). Characterization and Comparative Durability Study of Glass/Vinylester, Basalt/Vinylester, and Basalt/Epoxy FRP Bars. Journal of Composites for Construction, 19(6), 04015008. doi:10.1061/(asce)cc.1943-5614.0000564.
[12] Cao, R., Zhang, B., Wang, L., Ding, J., & Chen, X. (2022). Utilizing alkali-activated materials as ordinary Portland cement replacement to study the bond performance of fiber-reinforced polymer bars in seawater sea-sand concrete. Advances in Structural Engineering, 25(5), 1103–1113. doi:10.1177/13694332211065186.
[13] Gooranorimi, O., Suaris, W., Dauer, E., & Nanni, A. (2017). Microstructural investigation of glass fiber reinforced polymer bars. Composites Part B: Engineering, 110, 388–395. doi:10.1016/j.compositesb.2016.11.029.
[14] Zeng, J. J., Hao, Z. H., Liang, Q. J., Zhuge, Y., & Liu, Y. (2023). Durability assessment of GFRP bars exposed to combined accelerated aging in alkaline solution and a constant load. Engineering Structures, 297. doi:10.1016/j.engstruct.2023.116990.
[15] Wang, T., Razaqpur, A. G., & Chen, S. (2023). Durability of GFRP and CFRP Bars in the Pore Solution of Calcium Sulfoaluminate Cement Concrete Made with Fresh or Seawater. Polymers, 15(15), 3306. doi:10.3390/polym15153306.
[16] Wu, G., Wang, X., Wu, Z., Dong, Z., & Xie, Q. (2015). Degradation of basalt FRP bars in alkaline environment. Science and Engineering of Composite Materials, 22(6), 649–657. doi:10.1515/secm-2014-0040.
[17] Feng, G., Zhu, D., Guo, S., Rahman, M. Z., Ma, W., Yi, Y., Jin, Z., & Shi, C. (2023). A comparative study of bare and seawater sea sand concrete wrapped basalt fiber-reinforced polymer bars exposed to laboratory and real marine environments. Construction and Building Materials, 371(130764). doi:10.1016/j.conbuildmat.2023.130764.
[18] Lu, Z., Su, L., Lai, J., Xie, J., & Yuan, B. (2021). Bond durability of BFRP bars embedded in concrete with fly ash in aggressive environments. Composite Structures, 271, 114121. doi:10.1016/j.compstruct.2021.114121.
[19] Lu, C., Ni, M., Chu, T., & He, L. (2020). Comparative Investigation on Tensile Performance of FRP Bars after Exposure to Water, Seawater, and Alkaline Solutions. Journal of Materials in Civil Engineering, 32(7), 04020170. doi:10.1061/(asce)mt.1943-5533.0003243.
[20] Li, Y., Yin, S., Lu, Y., & Hu, C. (2020). Experimental investigation of the mechanical properties of BFRP bars in coral concrete under high temperature and humidity. Construction and Building Materials, 259, 120591. doi:10.1016/j.conbuildmat.2020.120591.
[21] Wang, Z., Xie, J., Mai, Z., Liu, P., Lu, Z., & Li, L. (2023). Durability of GFRP bar-reinforced seawater–sea sand concrete beams: Coupled effects of sustained loading and exposure to a chloride environment. Engineering Structures, 283. doi:10.1016/j.engstruct.2023.115814.
[22] Guo, B., Yu, R., Wang, J., Zhang, Z., Wang, Y., & Niu, D. (2023). Three-fold benefits of using CO2 to cure seawater sea sand concrete. Construction and Building Materials, 401. doi:10.1016/j.conbuildmat.2023.132868.
[23] Yi, Y., Zhu, D., Guo, S., Li, S., Feng, G., Liu, Z., Zhou, L., & Shi, C. (2022). Development of a low-alkalinity seawater sea sand concrete for enhanced compatibility with BFRP bar in the marine environment. Cement and Concrete Composites, 134, 104778. doi:10.1016/j.cemconcomp.2022.104778.
[24] Lu, Z., Li, S., Xie, J., Huang, Q., Zhang, B., Huang, P., Li, J., & Li, L. (2022). Durability of GFRP bars embedded in seawater sea-sand concrete: A coupling effect of prestress and immersion in seawater. Construction and Building Materials, 326, 126979. doi:10.1016/j.conbuildmat.2022.126979.
[25] Fergani, H., Di Benedetti, M., Mií s Oller, C., Lynsdale, C., & Guadagnini, M. (2018). Durability and degradation mechanisms of GFRP reinforcement subjected to severe environments and sustained stress. Construction and Building Materials, 170, 637–648. doi:10.1016/j.conbuildmat.2018.03.092.
[26] Zhao, J., Jiang, Z., Lu, Z., Tan, Y., Li, S., Zhang, B., & Xie, J. (2024). Coupling Effects of Seawater Immersion and Prestressing on the Durability of BFRP Bars Embedded in Seawater–Sea Sand Geopolymer Mortars. Journal of Materials in Civil Engineering, 36(4), 04024049. doi:10.1061/jmcee7.mteng-17106.
[27] Zhang, X., & Deng, Z. (2019). Durability of GFRP bars in the simulated marine environment and concrete environment under sustained compressive stress. Construction and Building Materials, 223, 299–309. doi:10.1016/j.conbuildmat.2019.06.212.
[28] Lu, Z., Li, Y., & Xie, J. (2021). Durability of BFRP bars wrapped in seawater sea sand concrete. Composite Structures, 255, 112935. doi:10.1016/j.compstruct.2020.112935.
[29] Zhou, J.-K., Hao, Z.-H., Zeng, J.-J., Feng, S.-Z., Liang, Q.-J., Zhao, B., Feng, R., & Zhuge, Y. (2024). Durability assessment of GFRP bars embedded in UHP-ECCs subjected to an accelerated aging environment with sustained loading. Construction and Building Materials, 419, 135364. doi:10.1016/j.conbuildmat.2024.135364.
[30] Başaran, B., Kalkan, İ., Beycioğlu, A., & Kasprzyk, I. (2022). A Review on the Physical Parameters Affecting the Bond Behavior of FRP Bars Embedded in Concrete. Polymers, 14(9), 1796. doi:10.3390/polym14091796.
[31] Benmokrane, B., Mohamed, K., & Cousin, P. (2020). Performance and Durability of In-Plant Partially Cured GFRP Bent Bars in Steam-Cured Precast Concrete Elements. Journal of Composites for Construction, 24(4), 04020020. doi:10.1061/(asce)cc.1943-5614.0001028.
[32] Debaiky, A. S., Nkurunziza, G., Benmokrane, B., & Cousin, P. (2006). Residual Tensile Properties of GFRP Reinforcing Bars after Loading in Severe Environments. Journal of Composites for Construction, 10(5), 370–380. doi:10.1061/(asce)1090-0268(2006)10:5(370).
[33] Jia, D., Guo, Q., Mao, J., Lv, J., & Yang, Z. (2020). Durability of glass fibre-reinforced polymer (GFRP) bars embedded in concrete under various environments. I: Experiments and analysis. Composite Structures, 234, 111687. doi:10.1016/j.compstruct.2019.111687.
[34] Ahmed, A., Guo, S., Zhang, Z., Shi, C., & Zhu, D. (2020). A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete. Construction and Building Materials, 256, 119484. doi:10.1016/j.conbuildmat.2020.119484.
[35] Hassan, M., Benmokrane, B., ElSafty, A., & Fam, A. (2016). Bond durability of basalt-fiber-reinforced-polymer (BFRP) bars embedded in concrete in aggressive environments. Composites Part B: Engineering, 106, 262–272. doi:10.1016/j.compositesb.2016.09.039.
[36] Rifai, M. A., El-Hassan, H., El-Maaddawy, T., & Abed, F. (2020). Durability of basalt FRP reinforcing bars in alkaline solution and moist concrete environments. Construction and Building Materials, 243, 118258. doi:10.1016/j.conbuildmat.2020.118258.
[37] Benmokrane, B., Mousa, S., Mohamed, K., & Sayed-Ahmed, M. (2021). Physical, mechanical, and durability characteristics of newly developed thermoplastic GFRP bars for reinforcing concrete structures. Construction and Building Materials, 276, 122200. doi:10.1016/j.conbuildmat.2020.122200.
[38] Dong, Z., Wu, G., Xu, B., Wang, X., & Taerwe, L. (2018). Bond performance of alkaline solution pre-exposed FRP bars with concrete. Magazine of Concrete Research, 70(17), 894–904. doi:10.1680/jmacr.17.00027.
[39] Zheng, Y., Ni, M., Lu, C., Chu, T., & Wu, X. (2021). Bond behavior of GFRP-concrete under long-term exposure to aggressive environments. Journal of Advanced Concrete Technology, 18(12), 730–742. doi:10.3151/JACT.18.730.
[40] Benmokrane, B., Mohamed, H. M., & Ali, A. H. (2018). Service-life-prediction and field application of glass fiber-reinforced polymer tubular and solid bolts based on laboratory physical and mechanical assessment. Journal of Composite Materials, 52(24), 3309–3323. doi:10.1177/0021998318764806.
[41] Guo, X., Jin, Z., Xiong, C., Pang, B., Hou, D., & Li, W. (2024). Degradation of mechanical properties and microstructure evolution of basalt-carbon based hybrid FRP bars in real seawater and sea-sand concrete. Composites Part B: Engineering, 271, 111163. doi:10.1016/j.compositesb.2023.111163.
[42] Taha, A., Alnahhal, W., & Alnuaimi, N. (2020). Bond durability of basalt FRP bars to fiber reinforced concrete in a saline environment. Composite Structures, 243, 112277. doI:10.1016/j.compstruct.2020.112277.
[43] Sayyar, M., Soroushian, P., Sadiq, M. M., Balachandra, A., & Lu, J. (2013). Low-cost glass fiber composites with enhanced alkali resistance tailored towards concrete reinforcement. Construction and Building Materials, 44, 458–463. doi:10.1016/j.conbuildmat.2013.03.055.
[44] Arczewska, P., Polak, M. A., & Penlidis, A. (2021). Degradation of glass fiber reinforced polymer (GFRP) bars in concrete environment. Construction and Building Materials, 293. doi:10.1016/j.conbuildmat.2021.123451.
[45] Almusallam, T. H., Al-Salloum, Y. A., Alsayed, S. H., El-Gamal, S., & Aqel, M. (2013). Tensile properties degradation of glass fiber-reinforced polymer bars embedded in concrete under severe laboratory and field environmental conditions. Journal of Composite Materials, 47(4), 393–407. doi:10.1177/0021998312440473.
[46] Yu, Y., Pan, Y., Zhou, R., & Miao, X. (2021). Effects of Water and Alkaline Solution on Durability of Carbon-Glass Hybrid Fiber Reinforced Polymer Bars. Polymers, 13(21), 3844. doi:10.3390/polym13213844.
[47] Yu, Y., Liu, S., Pan, Y., Miu, X., & Liu, J. (2021). Durability of glass fiber-reinforced polymer bars in water and simulated concrete pore solution. Construction and Building Materials, 299, 123995. doi:10.1016/j.conbuildmat.2021.123995.
[48] Esmaeili, Y., Mohamed, K., Newhook, J., & Benmokrane, B. (2021). Assessment of creep rupture and long-term performance of GFRP bars subjected to different environmental exposure conditions under high sustained loads. Construction and Building Materials, 300(124327). doi:10.1016/j.conbuildmat.2021.124327.
[49] Tu, J., Xie, H., Gao, K., Li, Z., & Zhang, J. (2019). Durability Prediction of GFRP Rebar Based on Elastic Modulus Degradation. Frontiers in Materials, 6. doi:10.3389/fmats.2019.00258.
[50] Yan, F., & Lin, Z. (2017). Bond durability assessment and long-term degradation prediction for GFRP bars to fiber-reinforced concrete under saline solutions. Composite Structures, 161, 393–406. doi:10.1016/j.compstruct.2016.11.055.
[51] Wu, G., Dong, Z.-Q., Wang, X., Zhu, Y., & Wu, Z.-S. (2015). Prediction of Long-Term Performance and Durability of BFRP Bars under the Combined Effect of Sustained Load and Corrosive Solutions. Journal of Composites for Construction, 19(3), 04014058. doi:10.1061/(asce)cc.1943-5614.0000517.
[52] Yan, F., Lin, Z., & Yang, M. (2016). Bond mechanism and bond strength of GFRP bars to concrete: A review. Composites Part B: Engineering, 98, 56–69. doi:10.1016/j.compositesb.2016.04.068.
[53] Kaloop, M. R., Samui, P., Iqbal, M., & Hu, J. W. (2022). Soft computing approaches towards tensile strength estimation of GFRP rebars subjected to alkaline-concrete environment. Case Studies in Construction Materials, 16, e00955. doi:10.1016/j.cscm.2022.e00955.
[54] Iqbal, M., Elbaz, K., Zhang, D., Hu, L., & Jalal, F. E. (2023). Prediction of residual tensile strength of glass fiber reinforced polymer bars in harsh alkaline concrete environment using fuzzy metaheuristic models. Journal of Ocean Engineering and Science, 8(5), 546–558. doi:10.1016/j.joes.2022.03.011.
[55] Zhang, K., Zhang, K., & Bao, R. (2023). Machine learning models to predict the residual tensile strength of glass fiber reinforced polymer bars in strong alkaline environments: A comparative study. Journal of Building Engineering, 73. doi:10.1016/j.jobe.2023.106817.
[56] Pan, Y., & Yan, D. (2021). Study on the durability of GFRP bars and carbon/glass hybrid fiber reinforced polymer (HFRP) bars aged in alkaline solution. Composite Structures, 261, 113285. doi:10.1016/j.compstruct.2020.113285.
[57] Won, J. P., Yoon, Y. N., Hong, B. T., Choi, T. J., & Lee, S. J. (2012). Durability characteristics of nano-GFRP composite reinforcing bars for concrete structures in moist and alkaline environments. Composite Structures, 94(3), 1236–1242. doi:10.1016/j.compstruct.2011.11.006.
[58] Ji, X.-L., Chen, L.-J., Liang, K., Pan, W., & Kai-Leung Su, R. (2023). A review on FRP bars and supplementary cementitious materials for the next generation of sustainable and durable construction materials. Construction and Building Materials, 383, 131403. doi:10.1016/j.conbuildmat.2023.131403.
[59] Wiciak, P., Polak, M. A., & Cascante, G. (2021). Wave propagation in glass fibre-reinforced polymer (GFRP) bars subjected to progressive damage-Experimental and numerical results. Materials Today Communications, 27, 102199. doi:10.1016/j.mtcomm.2021.102199.
[60] Wiciak, P., Polak, M. A., & Cascante, G. (2021). Nondestructive Evaluation of Damage in GFRP Bars Using Ultrasonic Guided Waves. Journal of Composites for Construction, 25(6), 04021055. doi:10.1061/(asce)cc.1943-5614.0001166.
[61] Singhvi, A., & Mirmiran, A. (2002). Creep and durability of environmentally conditioned FRP-RC beams using fiber optic sensors. Journal of Reinforced Plastics and Composites, 21(4), 351-373. doi:10.1177/0731684402021004254.
[62] Su, C., Wang, X., Ding, L., Liu, S., Chen, Z., & Wu, Z. (2023). Prediction of long-term durability of unidirectional/multidirectional basalt fiber- and hybrid fiber-reinforced polymer profiles under concrete environment. Construction and Building Materials, 384. doi:10.1016/j.conbuildmat.2023.131248.
[63] Abdullah, K. A., Abdullah, A. I., Abdul-Razzak, A. A., & Al-Gburi, M. (2024). Mechanical properties, thermal and chemical effect of polymer cotton bars reinforced with carbon / glass fiber. Australian Journal of Mechanical Engineering, 22(3), 592–602. doi:10.1080/14484846.2022.2125472.
[64] Ali, A. H., Benmokrane, B., Mohamed, H. M., Manalo, A., & El-Safty, A. (2018). Statistical analysis and theoretical predictions of the tensile-strength retention of glass fiber-reinforced polymer bars based on resin type. Journal of Composite Materials, 52(21), 2929–2948. doi:10.1177/0021998318755866.
[65] Ali, A. H., Mohamed, H. M., & Benmokrane, B. (2020). Bar size effect on long-term durability of sand-coated basalt-FRP composite bars. Composites Part B: Engineering, 195, 108059. doi:10.1016/j.compositesb.2020.108059.
[66] Altalmas, A., El Refai, A., & Abed, F. (2015). Bond degradation of basalt fiber-reinforced polymer (BFRP) bars exposed to accelerated aging conditions. Construction and Building Materials, 81, 162–171. doi:10.1016/j.conbuildmat.2015.02.036.
[67] Bakis, C. E., Boothby, T. E., & Jia, J. (2007). Bond Durability of Glass Fiber-Reinforced Polymer Bars Embedded in Concrete Beams. Journal of Composites for Construction, 11(3), 269–278. doi:10.1061/(asce)1090-0268(2007)11:3(269).
[68] Banibayat, P., & Patnaik, A. (2015). Creep Rupture Performance of Basalt Fiber-Reinforced Polymer Bars. Journal of Aerospace Engineering, 28(3), 04014074. doi:10.1061/(asce)as.1943-5525.0000391.
[69] Bazli, M., Ashrafi, H., & Oskouei, A. V. (2017). Experiments and probabilistic models of bond strength between GFRP bar and different types of concrete under aggressive environments. Construction and Building Materials, 148, 429–443. doi:10.1016/j.conbuildmat.2017.05.046.
[70] Benmokrane, B., Wang, P., Ton-That, T. M., Rahman, H., & Robert, J.-F. (2002). Durability of Glass Fiber-Reinforced Polymer Reinforcing Bars in Concrete Environment. Journal of Composites for Construction, 6(3), 143–153. doi:10.1061/(asce)1090-0268(2002)6:3(143).
[71] Benmokrane, B., Manalo, A., Bouhet, J.-C., Mohamed, K., & Robert, M. (2017). Effects of Diameter on the Durability of Glass Fiber–Reinforced Polymer Bars Conditioned in Alkaline Solution. Journal of Composites for Construction, 21(5), 04017040. doi:10.1061/(asce)cc.1943-5614.0000814.
[72] Benmokrane, B., Robert, M., Mohamed, H. M., Ali, A. H., & Cousin, P. (2017). Durability Assessment of Glass FRP Solid and Hollow Bars (Rock Bolts) for Application in Ground Control of Jurong Rock Caverns in Singapore. Journal of Composites for Construction, 21(3), 06016002. doi:10.1061/(asce)cc.1943-5614.0000775.
[73] Chen, Z., Yu, J., Nong, Y., Yang, Y., Zhang, H., & Tang, Y. (2023). Beyond time: Enhancing corrosion resistance of geopolymer concrete and BFRP bars in seawater. Composite Structures, 322, 117439. doi:10.1016/j.compstruct.2023.117439.
[74] D'Antino, T., & Pisani, M. A. (2018). Influence of sustained stress on the durability of glass FRP reinforcing bars. Construction and Building Materials, 187, 474–486. doi:10.1016/j.conbuildmat.2018.07.175.
[75] D'Antino, T., Bertolli, V., Pisani, M. A., & Poggi, C. (2023). Tensile and interlaminar shear behavior of thermoset and thermoplastic GFRP bars exposed to alkaline environment. Journal of Building Engineering, 72, 106581. doi:10.1016/j.jobe.2023.106581.
[76] Fan, X., & Zhang, M. (2016). Behaviour of inorganic polymer concrete columns reinforced with basalt FRP bars under eccentric compression: An experimental study. Composites Part B: Engineering, 104, 44–56. doi:10.1016/j.compositesb.2016.08.020.
[77] Fasil, M., & Al-Zahrani, M. M. (2023). Transverse Shear Capacity Predictions of GFRP Bars Subjected to Accelerated Aging Using Artificial Neural Networks. Journal of Materials in Civil Engineering, 35(4), 04023024. doi:10.1061/(asce)mt.1943-5533.0004686.
[78] Fu, H., Xu, Y., Li, W., Lu, Z., Liang, J., & Xie, J. (2024). Durability of carbon/basalt hybrid fiber reinforced polymer bars immersed in alkaline solution. Polymer Composites, 45(5), 4743–4759. doi:10.1002/pc.28093.
[79] Genikomsou, A. S., Balomenos, G. P., Arczewska, P., & Polak, M. A. (2018). Transverse Shear Testing of GFRP Bars with Reduced Cross Sections. Journal of Composites for Construction, 22(5), 04018041. doi:10.1061/(asce)cc.1943-5614.0000880.
[80] He, X. J., Dai, L., & Yang, W. R. (2017). Durability and degradation mechanism of GFRP bars embedded in concrete beams with cracks. Plastics, Rubber and Composites, 46(1), 17–24. doi:10.1080/14658011.2016.1245807.
[81] Hokura, A., & Miyazato, S. (2022). Evaluation of Applicability of FRTP to Rebar in Concrete. Journal of Advanced Concrete Technology, 20(3), 188–199. doi:10.3151/jact.20.188.
[82] Hussain, S., Khan, M. Z. N., & Khan, H. A. (2022). Bond performance of basalt FRP bar against aggressive environment in high-strength concrete with varying bar diameter and bond length. Construction and Building Materials, 349. doi:10.1016/j.conbuildmat.2022.128779.
[83] Jiang, Z., Zhao, C., Xie, J., Tan, Y., Li, S., & Lu, Z. (2023). Shear performance degradation of basalt fiber-reinforced polymer bars in seawater environments: Coupled effects of seawater sea-sand geopolymer mortar coatings and sustained loading. Polymer Composites, 44(12), 8465–8483. doi:10.1002/pc.27713.
[84] Jin, Q., Chen, P., Gao, Y., Du, A., Liu, D., & Sun, L. (2020). Tensile strength and degradation of gfrp bars under combined effects of mechanical load and alkaline solution. Materials, 13(16), 3533. doi:10.3390/MA13163533.
[85] Karim, M. R., Kumar, R., Babbar, A., Sharma, S., & Kumar, R. (2024). Surface roughness and cutting force in turning of alkaline-treated banana fibre-reinforced polymer composite: Compressed air cutting. Journal of Reinforced Plastics and Composites. doi:10.1177/07316844241228935.
[86] Li, S., Guo, S., Yi, Y., Rahman, Z., Bai, X., Shi, C., Jin, Z., & Zhu, D. (2021). Transverse low-velocity impact performance of BFRP bars after exposure to the saline-alkaline environment. Construction and Building Materials, 307. doi:10.1016/j.conbuildmat.2021.124650.
[87] Li, W., Wen, F., Zhou, M., Liu, F., Jiao, Y., Wu, Q., & Liu, H. (2022). Assessment and Prediction Model of GFRP Bars' Durability Performance in Seawater Environment. Buildings, 12(2), 127. doi:10.3390/buildings12020127.
[88] Liu, Y., Zhu, Q., Teng, J., Deng, P., & Sun, Y. (2023). Bond Performance of Anti-Corrosion Bar Embedded in Ceramsite Concrete in Freeze–Thaw Cycles and Corrosive Environments. Buildings, 13(4), 884. doi:10.3390/buildings13040884.
[89] Lu, Z., Su, L., Tan, S., Li, Y., Xie, J., & Liu, F. (2020). Long-term shear performance of bare and cement mortar-coated BFRP bars in corrosive environments. Construction and Building Materials, 237, 117658. doi:10.1016/j.conbuildmat.2019.117658.
[90] Lu, Z., Su, L., Xian, G., Lu, B., & Xie, J. (2020). Durability study of concrete-covered basalt fiber-reinforced polymer (BFRP) bars in marine environment. Composite Structures, 234, 111650. doi:10.1016/j.compstruct.2019.111650.
[91] Lu, C., Qi, Z., Zheng, Y., Xuan, G., & Yan, Y. (2023). Long-term tensile performance of GFRP bars in loaded concrete and aggressive solutions. Journal of Building Engineering, 64. doi:10.1016/j.jobe.2022.105587.
[92] Manalo, A., Maranan, G., Benmokrane, B., Cousin, P., Alajarmeh, O., Ferdous, W., Liang, R., & Hota, G. (2020). Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environments. Cement and Concrete Composites, 109, 103564. doi:10.1016/j.cemconcomp.2020.103564.
[93] Moon, D. Y., Ou, Y. C., & Roh, H. (2017). Interlaminar shear capacity of thermally damaged GFRP bars under alkaline concrete environment. Construction and Building Materials, 152, 105–114. doi:10.1016/j.conbuildmat.2017.06.158.
[94] Mufti, A. A., Onofrei, M., Benmokrane, B., Banthia, N., Boulfiza, M., Newhook, J. P., Bakht, B., Tadros, G. S., & Brett, P. (2007). Field study of glass-fibre-reinforced polymer durability in concrete. Canadian Journal of Civil Engineering, 34(3), 355–366. doi:10.1139/L06-138.
[95] Nassar, R. U. D., Dominguez, G. D., Soroushian, P., Balachandra, A., Weerasiri, R., Darsanasiri, N., & Abdol, N. (2022). Factors influencing strength loss of glass-fiber-reinforced composite bars in highly alkaline environment of concrete. Structural Concrete, 23(2), 1005–1017. doi:10.1002/suco.202100645.
[96] Nkurunziza, G., Benmokrane, B., Debaiky, A. S., & Masmoudi, R. (2005). Effect of sustained load and environment on long-term tensile properties of glass fiber-reinforced polymer reinforcing bars. ACI Structural Journal, 102(4), 615–621. doi:10.14359/14566.
[97] El Refai, A. (2013). Durability and Fatigue of Basalt Fiber-Reinforced Polymer Bars Gripped with Steel Wedge Anchors. Journal of Composites for Construction, 17(6), 04013006. doi:10.1061/(asce)cc.1943-5614.0000417.
[98] Robert, M., & Benmokrane, B. (2013). Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars. Construction and Building Materials, 38, 274–284. doi:10.1016/j.conbuildmat.2012.08.021.
[99] Robert, M., Cousin, P., & Benmokrane, B. (2009). Durability of GFRP Reinforcing Bars Embedded in Moist Concrete. Journal of Composites for Construction, 13(2), 66–73. doi:10.1061/(asce)1090-0268(2009)13:2(66).
[100] Sen, R., Mullins, G., & Salem, T. (2002). Durability of E-glass/vinylester reinforcement in alkaline solution. ACI Structural Journal, 99(3), 369–375. doi:10.14359/11921.
[101] Shakiba, M., Bazli, M., Karamloo, M., & Doostmohamadi, A. (2023). Bond between Sand-Coated GFRP Bars and Normal-Strength, Self-Compacting, and Fiber-Reinforced Concrete under Seawater and Alkaline Solution. Journal of Composites for Construction, 27(1), 04022098. doi:10.1061/jccof2.cceng-3987.
[102] Silva, M. A. G., & Estíªví£o, M. (2020). Alkaline attack on cement or lime mortar and glass fiber-reinforced polymer rods. ACI Materials Journal, 117(1), 97–106. doi:10.14359/51719071.
[103] Sumida, A., & Mutsuyoshi, H. (2008). Mechanical Properties of Newly Developed Heat-Resistant FRP Bars. Journal of Advanced Concrete Technology, 6(1), 157–170. doi:10.3151/jact.6.157.
[104] Tabsh, S. W., Tamimi, A., El-Emam, M., & Zandavi, A. (2024). Effect of Rebar Harsh Storage Conditions on the Flexural Behavior of Glass FRP Concrete. Sustainability (Switzerland), 16(5), 1944. doi:10.3390/su16051944.
[105] Wang, B., Liu, G., & Miao, H. (2023). Experimental Study on the Bond Performance between Glass-Fiber-Reinforced Polymer (GFRP) Bars and Concrete. Buildings, 13(9), 2126. doi:10.3390/buildings13092126.
[106] Wu, W., He, X., Yang, W., Dai, L., Wang, Y., & He, J. (2022). Long-time durability of GFRP bars in the alkaline concrete environment for eight years. Construction and Building Materials, 314. doi:10.1016/j.conbuildmat.2021.125573.
[107] Xie, J., Li, Y., Lu, Z., Fan, Z., Li, J., & Li, S. (2022). Effects of Immersion in Water, Alkaline Solution, and Seawater on the Shear Performance of Basalt FRP Bars in Seawater–Sea Sand Concrete. Journal of Composites for Construction, 26(2). doi:10.1061/(asce)cc.1943-5614.0001184.
[108] Xin, W., Jianzhe, S., Lining, D., Yundong, J., & Zhishen, W. (2021). Durability of coral-reef-sand concrete beams reinforced with basalt fibre-reinforced polymer bars in seawater. Advances in Structural Engineering, 24(6), 1235–1247. doi:10.1177/1369433220981661.
[109] Yang, W., He, X., Dai, L., Zhao, X., & Shen, F. (2016). Fracture Performance of GFRP Bars Embedded in Concrete Beams with Cracks in an Alkaline Environment. Journal of Composites for Construction, 20(6), 04016040. doi:10.1061/(asce)cc.1943-5614.0000688.
[110] Yi, Y., Guo, S., Li, S., Zillur Rahman, M., Zhou, L., Shi, C., & Zhu, D. (2021). Effect of alkalinity on the shear performance degradation of basalt fiber-reinforced polymer bars in simulated seawater sea sand concrete environment. Construction and Building Materials, 299, 123957. doi:10.1016/j.conbuildmat.2021.123957.
[111] Yi, Y., Zhu, D., Rahman, M. Z., Shuaicheng, G., Li, S., Liu, Z., & Shi, C. (2022). Tensile properties deterioration of BFRP bars in simulated pore solution and real seawater sea sand concrete environment with varying alkalinities. Composites Part B: Engineering, 243, 110115. doi:10.1016/j.compositesb.2022.110115.
[112] Zhang, S., Gao, D., Huang, L., Ji, Y., Yan, Y., Zhu, H., & Tang, J. (2024). Investigation on the utilization of fiber clusters recycled from waste HFRP bars in concrete. Construction and Building Materials, 421, 135775. doi:10.1016/j.conbuildmat.2024.135775.
[113] Zhou, J., Chen, X., & Chen, S. (2012). Effect of different environments on bond strength of glass fiber-reinforced polymer and steel reinforcing bars. KSCE Journal of Civil Engineering, 16(6), 994–1002. doi:10.1007/s12205-012-1462-3.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
