The ITB Unit Hydrograph Method: A Novel Approach to User-Defined Unit Hydrograph Development (Part I)
Downloads
Doi: 10.28991/CEJ-2025-011-04-021
Full Text: PDF
[2] Natakusumah, D. K., Hatmoko, W., & Harlan, D. (2011). General Procedure for Calculating Synthetic Unit Hydrographs Using the ITB Method and Some Examples of Its Application. Jurnal Teknik Sipil, 18(3), 251. doi:10.5614/jts.2011.18.3.6. (In Indonesian).
[3] Natakusumah, D. K., Harlan, D., & Hatmoko, W. (2013). A new synthetic unit hydrograph computation method based on the mass conservation principle. WIT Transactions on Ecology and the Environment, 172, 27–38. doi:10.2495/RBM130031.
[4] Natakusumah, D. K. (2016). The Use of Synthetic Unit Hydrographs ITB 1 and ITB-2 With Peak Discharge Factor (Kp) Calculated Exactly. PIT HATHI 31, 15 March, 2014, Padang, Indonesia. (In Indonesian).
[5] Natakusumah, D. K., Wicaksana, G. A., & Nathaniel, B. (2021). Towards standardization of design flood calculation using Synthetic Unit Hydrograph methods. 7th International Seminar of HATHI, 30 October, Surabaya, Indonesia. (In Indonesian).
[6] Natakusumah, D. K. (2024). ITB Synthetic Unit Hydrograph Method with Exact and Numerical Peak Discharge Factor (Kp) and Normalized Unit Rainfall Duration (Tr). Media Komunikasi Teknik Sipil, 30(1), 144–156. doi:10.14710/mkts.v30i1.55820.
[7] Yi, B., Chen, L., & Xie, T. (2024). On the Influence of Spatial Heterogeneity of Runoff Generation on the Distributed Unit Hydrograph for Flood Prediction. doi:10.5194/hess-2024-51.
[8] Rafiee, M. R., Rad, S., Mahbod, M., Zolghadr, M., Azamatulla, H. M., & Tripathi, R. P. (2024). Modeling run-off flow hydrographs using remote sensing data: an application to the Bashar basin, Iran. Journal of Water and Climate Change, 15(4), 1490–1506. doi:10.2166/wcc.2024.378.
[9] Das, T., & Das, S. (2024). Event-based flood estimation in un-gauged sub-basins: a comparative assessment of SCS-UH, CWC-UH and Nash-GIUH based rainfall-runoff models in Shilabati River, Eastern India. Natural Hazards. doi:10.1007/s11069-024-06765-0.
[10] Qi, K., Al-Asadi, K., & Duan, J. G. (2024). Modeling Runoff and Sediment Load Using the HEC-HMS Model in an Arid Watershed. Journal of Hydrologic Engineering, 29(3), 05024005. doi:10.1061/jhyeff.heeng-6070.
[11] Marasini, U., & Pokhrel, M. (2024). Comparative analysis of rainfall-runoff simulation using a long short-term memory (LSTM) deep learning model and a conceptual hydrological model, HEC-HMS: a case study of the mountainous river basin of Nepal. Discover Civil Engineering, 1(1), 78. doi:10.1007/s44290-024-00084-w.
[12] Lange, H., & Sippel, S. (2020). Machine Learning Applications in Hydrology. Forest-Water Interactions, 233–257. doi:10.1007/978-3-030-26086-6_10.
[13] Shao, Z., Fu, H., Li, D., Altan, O., & Cheng, T. (2019). Remote sensing monitoring of multi-scale watersheds impermeability for urban hydrological evaluation. Remote Sensing of Environment, 232, 111338. doi:10.1016/j.rse.2019.111338.
[14] Nakhaei, M., Nakhaei, P., Gheibi, M., Chahkandi, B., WacЂawek, S., Behzadian, K., Chen, A. S., & Campos, L. C. (2023). Enhancing community resilience in arid regions: A smart framework for flash flood risk assessment. Ecological Indicators, 153, 110457. doi:10.1016/j.ecolind.2023.110457.
[15] Chen, H., Jeanne Huang, J., Li, H., Wei, Y., & Zhu, X. (2023). Revealing the response of urban heat island effect to water body evaporation from main urban and suburb areas. Journal of Hydrology, 623, 129687. doi:10.1016/j.jhydrol.2023.129687.
[16] Hall, C. A., Saia, S. M., Popp, A. L., Dogulu, N., Schymanski, S. J., Drost, N., van Emmerik, T., & Hut, R. (2022). A hydrologist's guide to open science. Hydrology and Earth System Sciences, 26(3), 647–664. doi:10.5194/hess-26-647-2022.
[17] SNI 2415:2016. (2016). Procedures for calculating planned flood discharge (SNI 2415:2016). Procedures for calculating design flood discharge. Badan Standardisasi Nasional, Jakarta, Indonesia. (In Indonesian).
[18] United Kingdom (UK) Government. (2010). Flood and Water Management Act 2010. United Kingdom (UK) Government, London, United Kingdom. Available Online: https://www.legislation.gov.uk/ukpga/2010/29/contents (accessed on March 2025).
[19] Ball, J., Babister, M., Nathan, R., Weinmann, E., Weeks, W., & Retallick, M. (2019). Australian rainfall and runoff: A guide to flood estimation. Commonwealth of Australia, Sydney, Australia.
[20] Public Safety Canada. (2021). National flood risk assessment guidelines. Ottawa, Ontario: Public Safety Canada. Public Safety Canada, Ottawa, Canada. Available online: https://www.publicsafety.gc.ca (accessed on March 2024).
[21] ICOLD. (2020). Guidelines for flood management and dam safety. International Commission on Large Dams (ICOLD), Paris, France.
[22] MSMA. (2021). Urban stormwater management manual for Malaysia (MSMA). Department of Irrigation and Drainage Malaysia, Cyberjaya, Malaysia. Available online: https://www.water.gov.my/jps/resources/PDF/MSMA2ndEdition_august_2012.pdf (accessed on March 2025).
[23] ANCOLD. (2016). Report CL1895: Guidelines on dam safety management. Australian National Committee on Large Dams (ANCOLD), Hobart, Australia. Available online: https://www.ancold.org.au/wp-content/uploads/2016/06/CL1895-Report.pdf (accessed on March 2025).
[24] Sherman, L. K. (1932). Streamflow from rainfall by the unit-graph method. Eng. News Record, 108, 501-505.
[25] Snyder, F. F. (1938). Flood-frequency and drainage-basin characteristics. Transactions of the American Society of Civil Engineers, 103(1), 877–924.
[26] Singh, P. K., Mishra, S. K., & Jain, M. K. (2014). A review of the synthetic unit hydrograph: from the empirical UH to advanced geomorphological methods. Hydrological Sciences Journal, 59(2), 239–261. doi:10.1080/02626667.2013.870664.
[27] Patil, S. K., & Bhagwat, T. N. (2019). A review of synthetic hydrograph method for design storm. International Research Journal of Engineering and Technology, 6(11), 2413-2418.
[28] Taylor, A. B., & Schwarz, H. E. (1952). Unit"hydrograph lag and peak flow related to basin characteristics. Eos, Transactions American Geophysical Union, 33(2), 235–246. doi:10.1029/TR033i002p00235.
[29] Mockus, V. (1957). Use of storm and watershed characteristics in synthetic hydrograph analysis and application. Soil Conservation Service, US Department of Agriculture, Washington, United States.
[30] U.S. Department of Agriculture. (2007). Part 630 Hydrology. Chapter 16: Hydrographs. National Engineering Handbook, US Department of Agriculture, Washington, United States. Available online: https://damtoolbox.org/images/5/5a/NEH16.pdf (accessed on March 2024).
[31] Nakayasu, N. (1962). Runoff characteristics in Japan. Transactions of the Japan Society of Civil Engineers, 77, 1–5.
[32] Tunas, I. G. (2017). Development of synthetic unit hydrograph model based on fractal characteristics of river basin. PhD Thesis, Surabaya, Indonesia. (In Indonesian).
[33] Patel, R. M. (2024). SCS dimensionless unit hydrograph. Available online: http://www.professorpatel.com/scs-dimensionless-unit-hydrograph.html (accessed on March 2025).
[34] Singh, V. P. (1988). The Double Triangle Model. Hydrologic systems: Vol. 1. Rainfall-runoff modeling. Prentice Hall, New Jersey, United States.
[35] Hickok, R. B., Keppel, R. V., & Rafferty, B. R. (1959). Hydrograph synthesis for small arid land watersheds. Agricultural Engineering, 40(10), 608-611.
[36] Singh, V. P. (1988). The Hickok-Keppel-Rafferty (HKR) Model. Hydrologic systems: Vol. 1. Rainfall-runoff modeling. Prentice Hall, New Jersey, United States.
[37] Mashuri, M., & Kiranaratri, A. H. (2019). Study of Modelling Synthetic Unit Hydrograph Using ITB-1 Method (Case Study: Upstream Siak Watershed). Jurnal Kajian Teknik Sipil, 4(2), 99–108. doi:10.52447/jkts.v4i2.1685.
[38] Iyan, E. R., Labdul, B. Y., & Husnan, R. (2022). Optimization of Synthetic Unit Hydrograph Parameter Coefficients Itb-1 and Itb-2 in the Bionga Kayubulan Sub-Das. Composite Journal, 2(1), 21-27. (In Indonesian).
[39] Saidah, H., Setiawan, A., Hanifah, L., Suroso, A., & Supriyadi, A. (2022). Performance of Nakayasu Synthetic Unit Hydrograph, ITB 2 and Limantara for Elongated Watersheds. PADURAKSA: Jurnal Teknik Sipil Universitas Warmadewa, 11(2), 157–165. doi:10.22225/pd.11.2.5013.157-165.
[40] Krisnayanti, D. S., Hunggurami, E., & Heo, R. S. (2020). Comparison of Design Flood Discharge Using Nakayasu, Gama I and Limantara HSS Methods in Raknamo Watershed. Jurnal Teknik Sipil, 9(1), 1-14. (In Indonesian).
[41] Peter, A. D. (2018). Comparison of Several Synthetic Unit Hydrographs (GAMA 1, Nakayasu, ITB 1-2, SCS, and Limantara) with Measured Unit Hydrographs. Bachelor Thesis, Universitas Gadjah Mada, Yogyakarta, Indonesia. (In Indonesian).
[42] Dewa B, A. G. (2016). Synthetic Unit Hydrograph Analysis with HSS Gama I and HSS ITB-2 Methods for Pam Sub-DAS (Final Project). Department of Civil Engineering, Faculty of Engineering, Sriwijaya University, Palembang, Indonesia. (In Indonesian).
[43] Kirana, P. H., Farid, M., Bagus Adityawan, M., Kuntoro, A. A., & Widyaningtyas, W. (2023). Study of Flood Risk Assessment on Banyumas and Cilacap District in Downstream Serayu River Basin, Indonesia. Jurnal Teknik Sipil, 30(2), 149–156. doi:10.5614/jts.2023.30.2.2.
[44] Suryadi, C., Soekarno, I., Kardhana, H., & Kuntoro, A. A. (2024). High Flow and Low Flow Frequency Analysis of Cikapundung River. Bearing: Jurnal Penelitian Dan Kajian Teknik Sipil, 8(2), 52. doi:10.32502/jbearing.v8i2.7840.
[45] Christian, J.D., Harlan, D., Suryadi, Y., Nugroho, E.O. (2024). Effectiveness of Baffled Chute Spillway Utilization at Lau Simeme Dam, Deli Serdang, North Sumatra. Pertemuan Ilmiah Tahunan ke-41 HATHI, 27-29 September, Sorong, Indonesia. (In Indonesian).
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
