Enhancement of Expansive Soil Properties by Water Treatment Sludge Ash in Landfill Liners
Downloads
Doi: 10.28991/CEJ-2024-010-11-04
Full Text: PDF
Downloads
[2] Jones, L. D., & Jefferson, I. (2023). Expansive soils. ICE Manual of Geotechnical Engineering, Second Edition, Volume I, 447–478, ICE Publishing, United Kingdom. doi:10.1680/icemge.66816.0447.
[3] Nalbantoǧlu, Z. (2004). Effectiveness of class C fly ash as an expansive soil stabilizer. Construction and Building Materials, 18(6), 377–381. doi:10.1016/j.conbuildmat.2004.03.011.
[4] Kethavathu, V. N. L. N., & Chigurupati, S. (2022). Utilization of admixture stabilized native expansive soil as a CNS material for heave control. Innovative Infrastructure Solutions, 7(4), 272. doi:10.1007/s41062-022-00873-1.
[5] AL-Soudany, K. (2018). Improvement of Expansive Soil by Using Silica Fume. Kufa Journal of Engineering, 9(1), 222–239. doi:10.30572/2018/kje/090115.
[6] Al-Soudany, K. Y. H. (2021). Improvement of Expansive Soil by Rice Husk Ash. Journal of Engineering Science and Technology, 16(6), 5027–5043.
[7] Hamid, M., Aljanabi, K., & Mustafa, A. (2023). Using water treatment sludge to Improve Geotechnical Engineering Properties of Soils: A Review. Anbar Journal of Engineering Sciences, 14(1), 50–65. doi:10.37649/aengs.2023.138350.1041.
[8] Moavenian, M. H., & Yasrobi, S. S. (2008). Volume change behavior of compacted clay due to organic liquids as permeant. Applied Clay Science, 39(1–2), 60–71. doi:10.1016/j.clay.2007.04.009.
[9] Al-Soudany, K., Al-Gharbawi, A., & Al-Noori, M. (2018). Improvement of clayey soil characteristics by using activated carbon. MATEC Web of Conferences, 162, 1009. doi:10.1051/matecconf/201816201009.
[10] Al-Soudany, K. Y. H., Fattah, M. Y., & Rahil, F. H. (2023). A Comprehensive Review of New Trends in the Use of Geosynthetics Clay Liner GCLs in Landfill. International Journal of Intelligent Systems and Applications in Engineering, 11(5s), 124–130.
[11] Ahmad, T., Ahmad, K., & Alam, M. (2016). Characterization of Water Treatment Plant's Sludge and its Safe Disposal Options. Procedia Environmental Sciences, 35, 950–955. doi:10.1016/j.proenv.2016.07.088.
[12] Al-Soudany, K. Y. H., Al-Adili, A., & Fadhil, A. I. (2024). Soft Clay Improved With Cigarette Butts. Journal of Engineering Science and Technology, 19(4), 1142–1155.
[13] Acikel, A. S., Gates, W. P., Singh, R. M., Bouazza, A., & Rowe, R. K. (2018). Insufficient initial hydration of GCLs from some subgrades: Factors and causes. Geotextiles and Geomembranes, 46(6), 770–781. doi:10.1016/j.geotexmem.2018.06.007.
[14] Al-Soudany, K. Y. H., Fattah, M. Y., & Rahil, F. H. (2024). A review of landfill liner and liner systems. AIP Conference Proceedings, 3105(1), 50013. doi:10.1063/5.0212198.
[15] Bouazza, A., Vangpaisal, T., & Jefferis, S. (2006). Effect of Wet–Dry Cycles and Cation Exchange on Gas Permeability of Geosynthetic Clay Liners. Journal of Geotechnical and Geoenvironmental Engineering, 132(8), 1011–1018. doi:10.1061/(asce)1090-0241(2006)132:8(1011).
[16] De Camillis, M., Di Emidio, G., Bezuijen, A., Verastegui Flores, D., Van Stappen, J., & Cnudde, V. (2017). Effect of wet-dry cycles on polymer treated bentonite in seawater: swelling ability, hydraulic conductivity and crack analysis. Applied Clay Science, 142, 52–59. doi:10.1016/j.clay.2016.11.011.
[17] Qiu, H., & Yu, J. (2008). Polyacrylate/(carboxymethylcellulose modified montmorillonite) superabsorbent nanocomposite: Preparation and water absorbency. Journal of Applied Polymer Science, 107(1), 118–123. doi:10.1002/app.26261.
[18] Kaish, A. B. M. A., Breesem, K. M., & Abood, M. M. (2018). Influence of pre-treated alum sludge on properties of high-strength self-compacting concrete. Journal of Cleaner Production, 202, 1085–1096. doi:10.1016/j.jclepro.2018.08.156.
[19] Ihsan, E. A. A., Al-Quraishi, H., & Mahdi, A. H. (2024). Effect of partially cement replacement by water and wastewater sludge ash on mechanical properties of concrete. AIP Conference Proceedings, 3105(1), 50013. doi:10.1063/5.0212193.
[20] Abdalla, A. A., & Salih Mohammed, A. (2022). Theoretical models to evaluate the effect of SiO2 and CaO contents on the long-term compressive strength of cement mortar modified with cement kiln dust (CKD). Archives of Civil and Mechanical Engineering, 22(3), 1–21. doi:10.1007/s43452-022-00418-4.
[21] Polat, R., Demirboğa, R., & Karagöl, F. (2019). Mechanical and physical behavior of cement paste and mortar incorporating nano-CaO. Structural Concrete, 20(1), 361–370. doi:10.1002/suco.201800132.
[22] Qarluq, A. W., Polat, R., & Fatma Karagöl, F. (2020). Effects of Single and Dual Use of Halloysite Nano-Clay, Nano-SiO2 and Nano-CaO on the Properties of Cement Based Mortars. European Journal of Science and Technology, 20, 815–826. doi:10.31590/ejosat.792365.
[23] Horkoss, S., Escadeillas, G., Rizk, T., & Lteif, R. (2016). The effect of the source of cement SO3 on the expansion of mortars. Case Studies in Construction Materials, 4, 62–72. doi:10.1016/j.cscm.2015.12.004.
[24] Owaid, H. M., Hamid, R., & Taha, M. R. (2014). Influence of thermally activated alum sludge ash on the engineering properties of multiple-blended binders concretes. Construction and Building Materials, 61, 216–229. doi:10.1016/j.conbuildmat.2014.03.014.
[25] Nurul Nazierah, M.Y., Kartini, K., Hamidah, M.S., & Nuraini, T. (2016). Compressive Strength and Water Absorption of Sewage Sludge Ash (SSA) Mortar. CIEC 2015, Springer, Singapore. doi:10.1007/978-981-10-0155-0_19.
[26] Tantawy, M. A., El-Roudi, A. M., Abdalla, E. M., & Abdelzaher, M. A. (2012). Evaluation of the Pozzolanic Activity of Sewage Sludge Ash. ISRN Chemical Engineering, 2012, 1–8. doi:10.5402/2012/487037.
[27] Montalvan, E. L. T., & Boscov, M. E. G. (2016). Geotechnical Characterization of a Soil-Water Treatment Sludge Mixture. Geo-Chicago, 271, 418–427. doi:10.1061/9780784480144.041.
[28] Marchiori, L., Studart, A., Albuquerque, A., Pais, L. A., Boscov, M. E., & Cavaleiro, V. (2022). Mechanical and Chemical Behaviour of Water Treatment Sludge and Soft Soil Mixtures for Liner Production. The Open Civil Engineering Journal, 16(1). doi:10.2174/18741495-v16-e221115-2022-27.
[29] Godoy, L. G. G. de, Rohden, A. B., Garcez, M. R., Costa, E. B. da, Da Dalt, S., & Andrade, J. J. de O. (2019). Valorization of water treatment sludge waste by application as supplementary cementitious material. Construction and Building Materials, 223, 939–950. doi:10.1016/j.conbuildmat.2019.07.333.
[30] Bandieira, M., Zat, T., Schuster, S. L., Justen, L. H., Weide, H., & Rodríguez, E. D. (2021). Water treatment sludge in the production of red-ceramic bricks: effects on the physico-mechanical properties. Materials and Structures, 54(4), 168. doi:10.1617/s11527-021-01764-0.
[31] Silva, A. R. (2021). Geotechnical behavior of mixture of lateritic clay sand and sludge from the Taiaçupeba water treatment, Suzano, Sí£o Paulo. Master Thesis, University of Sao Paulo, Sí£o Paulo, Brazil.
[32] Naamane, S., Rais, Z., & Taleb, M. (2016). The effectiveness of the incineration of sewage sludge on the evolution of physicochemical and mechanical properties of Portland cement. Construction and Building Materials, 112, 783–789. doi:10.1016/j.conbuildmat.2016.02.121.
[33] Mojapelo, K. S., Kupolati, W. K., Ndambuki, J. M., Sadiku, E. R., & Ibrahim, I. D. (2021). Utilization of wastewater sludge for lightweight concrete and the use of wastewater as curing medium. Case Studies in Construction Materials, 15, 667. doi:10.1016/j.cscm.2021.e00667.
[34] Lothenbach, B., & Nonat, A. (2015). Calcium silicate hydrates: Solid and liquid phase composition. Cement and Concrete Research, 78, 57–70. doi:10.1016/j.cemconres.2015.03.019.
[35] Kumar, A., & Sivapullaiah, P. (2014). Mineralogical and microstructural induced compressibility behavior of lime stabilized expansive soil. International Symposium Geohazards: Science, Engineering and Managemen, 502–513.
[36] Punmia, B., & Jain, A. K. (2005). Soil mechanics and foundations. Laxmi Publications, Delhi, India.
[37] Yamusa, Y. B., Ahmad, K., & Abd Rahman, N. (2018). Hydraulic Conductivity and Volumetric Shrinkage Properties Review on Gradation Effect of Compacted Laterite Soil Liner. Malaysian Journal of Civil Engineering, 29, 153–164. doi:10.11113/mjce.v29.15689.
[38] Fattah, M. Y., Salim, N. M., & Irshayyid, E. J. (2021). Swelling Behavior of Unsaturated Expansive Soil. Transportation Infrastructure Geotechnology, 8(1), 37–58. doi:10.1007/s40515-020-00112-z.
[39] Eberemu, A. O. (2011). Desiccation induced shrinkage of compacted tropical clay treated with rice husk ash. International Journal of Engineering Research in Africa, 6, 45–64. doi:10.4028/www.scientific.net/JERA.6.45.
[40] Osinubi, K. J., & Eberemu, A. O. (2008). Effect of desiccation on compacted lateritic soil treated with bagasse ash. Materials Society of Nigeria (MSN) Zaria Chapter Book of Proceedings, 1-10.
[41] Bello, A. A. (2011). The use of Standard Proctor for the determination of Shrinkage Properties of Reddish Brown Tropical soil. Leonardo Journal of Sciences, 19, 57-68.
[42] Costa, S., Kodikara, J., & Shannon, B. (2013). Salient factors controlling desiccation cracking of clay in laboratory experiments. Geotechnique, 63(1), 18–29. doi:10.1680/geot.9.P.105.
[43] Peron, H., Hueckel, T., Laloui, L., & Hu, L. B. (2009). Fundamentals of desiccation cracking of fine-grained soils: Experimental characterisation and mechanisms identification. Canadian Geotechnical Journal, 46(10), 1177–1201. doi:10.1139/T09-054.
[44] Peron, H., Laloui, L., Hueckel, T., & Hu, L. B. (2009). Desiccation cracking of soils. European Journal of Environmental and Civil Engineering, 13(7–8), 869–888. doi:10.1080/19648189.2009.9693159.
[45] Costa, S., Kodikara, J., Barbour, S. L., & Fredlund, D. G. (2018). Theoretical analysis of desiccation crack spacing of a thin, long soil layer. Acta Geotechnica, 13(1), 39–49. doi:10.1007/s11440-017-0602-9.
[46] Miller, C. J., Mi, H., & Yesiller, N. (1998). Experimental analysis of desiccation crack propagation in clay liners. Journal of the American Water Resources Association, 34(3), 677–686. doi:10.1111/j.1752-1688.1998.tb00964.x.
[47] Miller, C. J., & Rifai, S. (2004). Fiber Reinforcement for Waste Containment Soil Liners. Journal of Environmental Engineering, 130(8), 891–895. doi:10.1061/(asce)0733-9372(2004)130:8(891).
[48] Osinubi, K. J., & Eberemu, A. O. (2010). Desiccation Induced Shrinkage of Compacted Lateritic Soil Treated with Blast Furnace Slag. Geotechnical and Geological Engineering, 28(5), 537–547. doi:10.1007/s10706-010-9308-6.
[49] Albrecht, B. A., & Benson, C. H. (2001). Effect of Desiccation on Compacted Natural Clays. Journal of Geotechnical and Geoenvironmental Engineering, 127(1), 67–75. doi:10.1061/(asce)1090-0241(2001)127:1(67).
[50] Epa/625/4-91/025. (1991). Design and Construction of RERA/CERELA Final Covers. United States Environmental Protection Agency, Cincinnati, United States.
[51] Ministry Of Housing and Local Government. (2005). Criteria For Siting Sanitary Landfills: National Strategic Plan For Solid Waste Management, Kuala Lumpur, Malaysia.
[52] Daniel, D. E. (1993). Geotechnical Practice for Waste Disposal. Springer, Dordrecht, Netherlands. doi:10.1007/978-1-4615-3070-1.
[53] Chenna, H. N. P., & Chouksey, S. K. (2024). Comparison of Geotechnical Properties of Landfill Waste in Different Indian Cities. Indian Geotechnical Journal, 1-21. doi:10.1007/s40098-024-01003-7.
[54] Ahmad, S. Z., Ahamad, M. S. S., & Yusoff, M. S. (2014). Spatial effect of new municipal solid waste landfill siting using different guidelines. Waste Management and Research, 32(1), 24–33. doi:10.1177/0734242X13507313.
[55] Head, K. H. (1980). Manual of soil laboratory testing. Pentech press, London, United Kingdom.
[56] Tejeda Montalvan, E. L. (2020). Geotechnical properties of mixtures of water treatment sludge and residual lateritic soils from the State of Sí£o Paulo, Ph.D. Thesis, University of Sao Paulo, Sí£o Paulo, Brazil.
[57] Han, W. J., Lee, J. S., Lee, D., & Kim, J. (2024). Factors affecting the expansion ratio and flow consistency of expandable foam grout for subsurface improvement. Case Studies in Construction Materials, 21(2024), e03544. doi:10.1016/j.cscm.2024.e03544.
[58] Al-Rawas, A. A., & Goosen, M. F. (2006). Expansive Soils: Recent Advances in Characterization and Treatment. CRC Press, Boca Raton, United States.
[59] Dang, L. C., Fatahi, B., & Khabbaz, H. (2016). Behaviour of Expansive Soils Stabilized with Hydrated Lime and Bagasse Fibres. Procedia Engineering, 143, 658–665. doi:10.1016/j.proeng.2016.06.093.
[60] Phani Kumar, B. R., & Sharma, R. S. (2004). Effect of Fly Ash on Engineering Properties of Expansive Soils. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 764–767. doi:10.1061/(asce)1090-0241(2004)130:7(764).
[61] Amadi, A. A. (2014). Enhancing durability of quarry fines modified black cotton soil subgrade with cement kiln dust stabilization. Transportation Geotechnics, 1(1), 55–61. doi:10.1016/j.trgeo.2014.02.002.
[62] Osinubi, K. J. (2006). Influence of Compactive Efforts on Lime-Slag Treated Tropical Black Clay. Journal of Materials in Civil Engineering, 18(2), 175–181. doi:10.1061/(asce)0899-1561(2006)18:2(175).
[63] Brooks, R. M. (2009). Soil stabilization with flyash and rice husk ash. ARPA Press, Islamabad, Pakistan.
[64] Kalkan, E. (2009). Effects of silica fume on the geotechnical properties of fine-grained soils exposed to freeze and thaw. Cold Regions Science and Technology, 58(3), 130–135. doi:10.1016/j.coldregions.2009.03.011.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.