Impact of Vertical Vibration on Group Piles During Earthquake Loading: Experimental Findings
Downloads
Doi: 10.28991/CEJ-SP2024-010-010
Full Text: PDF
Downloads
[2] Novak, M. (1977). Vertical Vibration of Floating Piles. ASCE Journal of the Engineering Mechanics Division, 103(1), 153–168. doi:10.1061/jmcea3.0002201.
[3] Novak, M., & El Sharnouby, B. (1983). Stiffness constants of single piles. Journal of Geotechnical Engineering, 109(7), 961–974. doi:10.1061/(ASCE)0733-9410(1983)109:7(961).
[4] Novak, M., & Aboul-Ella, F. (1978). Impedance Functions of Piles in Layered Media. Journal of the Engineering Mechanics Division, 104(3), 643–661. doi:10.1061/jmcea3.0002366.
[5] Novak, M., & Aboul-Ella, F. (1978). Stiffness and Damping of Piles in Layered Media. Earthquake Engineering and Soil Dynamics-Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference, 19-21 June, 1978, Pasadena, United States.
[6] Novak, M. & Sheta, M. (1980). Approximate approach to contact effects of piles. Special technical publication on dynamic response of pile foundations: Analytical aspects. Proceedings of the Geotechnical Engineering Division, ASCE (1980), 53-79
[7] Ei Naggar, M. H., & Novak, M. (1995). Effect of foundation nonlinearity on modal properties of offshore towers. Journal of Geotechnical Engineering, 121(9), 660–668. doi:10.1061/(asce)0733-9410(1995)121:9(660).
[8] El Naggar, M. H., & Novak, M. (1996). Nonlinear analysis for dynamic lateral pile response. Soil Dynamics and Earthquake Engineering, 15(4), 233–244. doi:10.1016/0267-7261(95)00049-6.
[9] Asgarian, B., Assareh, M. A., & Alanjari, P. (2008). Nonlinear Behavior of Single Piles in Jacket Type Offshore Platforms Using Incremental Dynamic Analysis. Volume 2: Structures, Safety and Reliability, 139–148. doi:10.1115/omae2008-57148.
[10] Chau, K. T., & Yang, X. (2005). Nonlinear Interaction of Soil–Pile in Horizontal Vibration. Journal of Engineering Mechanics, 131(8), 847–858. doi:10.1061/(asce)0733-9399(2005)131:8(847).
[11] Krishnan, R., Gazetas, G., & Velez, A. (1983). Static and dynamic lateral deflexion of piles in non-homogeneous soil stratum. Geotechnique, 33(3), 307–325. doi:10.1680/geot.1983.33.3.307.
[12] Wu, G., & Finn, W. D. L. (1997). Dynamic elastic analysis of pile foundations using finite element method in the frequency domain. Canadian Geotechnical Journal, 34(1), 34–43. doi:10.1139/t96-87.
[13] Kaynia, A. M. (1982). Dynamic stiffness and seismic response of pile groups. Ph.D. Thesis, Massachusetts Institute of technology, Cambridge, United States.
[14] Banerjee, P. K., Sen, R., & Davies, T. G. (1987). Static and dynamic analyses of axially and laterally loaded piles and pile groups. Gulf Publishing Co, Houston, United States.
[15] Ayothiraman, R., & Boominathan, A. (2006). Observed and Predicted Dynamic Lateral Response of Single Pile in Clay. Soil and Rock Behavior and Modeling, 367–374. doi:10.1061/40862(194)49.
[16] Fattah, M. Y., Hamood, M. J., & Al-Naqdi, I. A. A. (2015). Finite-element analysis of a piled machine foundation. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 168(6), 421–432. doi:10.1680/stbu.14.00053.
[17] Fattah, M. Y., Hamood, M. J., & Al-Nakdy, I. A. M. (2020). Dynamic Response of Machine Foundation Resting on End Bearing Piles. IOP Conference Series: Materials Science and Engineering, 978(1), 12038. doi:10.1088/1757-899X/978/1/012038.
[18] M. Al-Nakdy, I., Y. Fattah, M., & J. Hamood, M. (2014). Finite Element Analysis of Machine Foundation Resting on End Bearing Piles. Engineering and Technology Journal, 32(1A), 132–153. doi:10.30684/etj.32.1a.11.
[19] Al-Jeznawi, D., Jais, I. B. M., & Albusoda, B. S. (2022). a Soil-Pile Response Under Coupled Static-Dynamic Loadings in Terms of Kinematic Interaction. Civil and Environmental Engineering, 18(1), 96–103. doi:10.2478/cee-2022-0010.
[20] Al-Jeznawi, D., Mohamed Jais, I. B., Albusoda, B. S., & Khalid, N. (2022). Numerical modeling of single closed and open-ended pipe pile embedded in dry soil layers under coupled static and dynamic loadings. Journal of the Mechanical Behavior of Materials, 31(1), 587–594. doi:10.1515/jmbm-2022-0055.
[21] Al-Jeznawi, D., Mohamed Jais, I. B., Albusoda, B. S., & Khalid, N. (2022). The slenderness ratio effect on the response of closed-end pipe piles in liquefied and non-liquefied soil layers under coupled static-seismic loading. Journal of the Mechanical Behavior of Materials, 31(1), 83–89. doi:10.1515/jmbm-2022-0009.
[22] Fattah, M. Y., Zbar, B. S., & Mustafa, F. S. (2017). Vertical vibration capacity of a single pile in dry sand. Marine Georesources & Geotechnology, 35(8), 1111–1120. doi:10.1080/1064119X.2017.1294219.
[23] Fattah, M. Y., Zbar, B. S., & Mustafa, F. S. (2021). Effect of soil saturation on load transfer in a pile excited by pure vertical vibration. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 174(2), 132–144. doi:10.1680/jstbu.16.00206.
[24] Fattah, M. Y., Zabar, B. S., & Mustafa, F. S. (2020). Effect of saturation on response of a single pile embedded in saturated sandy soil to vertical vibration. European Journal of Environmental and Civil Engineering, 24(3), 381–400. doi:10.1080/19648189.2017.1391126.
[25] Choudhary, S. S., Biswas, S., & Manna, B. (2016). Dynamic coupled response of 6-pile groups with different pile arrangements. Japanese Geotechnical Society Special Publication, 2(38), 1389–1392. doi:10.3208/jgssp.ind-15.
[26] Khandelwal, M., Bharathi, M., & Mukerjee, S. (2016). Behaviour of short pile under machine induced horizontal vibrations. International Geotechnical Engineering Conference on Sustainability in Geotechnical Engineering Practices and Related Urban Issues, 23-24 September, 2016, Mumbai, India.
[27] Biswas, S., & Manna, B. (2018). Experimental and Theoretical Studies on the Nonlinear Characteristics of Soil-Pile Systems under Coupled Vibrations. Journal of Geotechnical and Geoenvironmental Engineering, 144(3), 4018007. doi:10.1061/(asce)gt.1943-5606.0001850.
[28] Bhowmik, D., Baidya, D. K., & Dasgupta, S. P. (2013). A numerical and experimental study of hollow steel pile in layered soil subjected to lateral dynamic loading. Soil Dynamics and Earthquake Engineering, 53, 119–129. doi:10.1016/j.soildyn.2013.06.011.
[29] Bhowmik, D., Baidya, D. K., & Dasgupta, S. P. (2016). A numerical and experimental study of hollow steel pile in layered soil subjected to vertical dynamic loading. Soil Dynamics and Earthquake Engineering, 85, 161–165. doi:10.1016/j.soildyn.2016.03.017.
[30] Bharathi, M., Dubey, R. N., & Shukla, S. K. (2022). Dynamic response of underreamed batter piles subjected to vertical vibration. International Journal of Geotechnical Engineering, 16(8), 991–999. doi:10.1080/19386362.2021.2025304.
[31] Choudhary, S. S., Biswas, S., & Manna, B. (2020). Experimental and numerical study of pile foundations subjected to rotating machine-induced coupled excitations. International Journal of Geotechnical Engineering, 14(6), 614–625. doi:10.1080/19386362.2019.1620536.
[32] Choudhary, S. S., Biswas, S., & Manna, B. (2021). Effect of Pile Arrangements on the Dynamic Coupled Response of Pile Groups. Geotechnical and Geological Engineering, 39(3), 1963–1978. doi:10.1007/s10706-020-01599-6.
[33] Sudhi, D., Sinha, S. K., Biswas, S., & Manna, B. (2023). Dynamic impedance parameters of floating piles subjected to coupled harmonic vibration. Arabian Journal of Geosciences, 16(9), 508. doi:10.1007/s12517-023-11615-7.
[34] Dihoru, L., Bhattacharya, S., Taylor, C. A., Muir Wood, D., Moccia, F., Simonelli, A. L., & Mylonakis, G. (2009). Experimental modeling of kinematic bending moments of piles in layered soils. Interface, 1, 1-8.
[35] Papazafeiropoulos, G., & Plevris, V. (2023). Kahramanmaraş”Gaziantep, Türkiye Mw 7.8 Earthquake on 6 February 2023: Strong Ground Motion and Building Response Estimations. Buildings, 13(5), 1194. doi:10.3390/buildings13051194.
[36] Kavvads, M., & Gazetas, G. (1993). Kinematic seismic response and bending of free-head piles in layered soil. Géotechnique, 43(2), 207–222. doi:10.1680/geot.1993.43.2.207.
[37] Mylonakis, G., Nikolaou, A., & Gazetas, G. (1997). Soil-pile-bridge seismic interaction: Kinematic and inertial effects. Part I: Soft soil. Earthquake Engineering & Structural Dynamics, 26(3), 337–359. doi:10.1002/(SICI)1096-9845(199703)26:3<337::AID-EQE646>3.0.CO;2-D.
[38] Boulanger, R. W., Curras, C. J., Kutter, B. L., Wilson, D. W., & Abghari, A. (1999). Seismic Soil-Pile-Structure Interaction Experiments and Analyses. Journal of Geotechnical and Geoenvironmental Engineering, 125(9), 750–759. doi:10.1061/(asce)1090-0241(1999)125:9(750).
[39] Youssef, A., Hegazy, M., & Mostafa, H. (2023). Performance of Isolated Footing with Several Corrosion Levels under Axial Loading. Civil Engineering Journal, 9(6), 1437-1455. doi:10.28991/CEJ-2023-09-06-011.
[40] Liu, Z. (John). (2013). Design of Foundations for Large Dynamic Equipment in a High Seismic Region. Structures Congress 2013, 1403–1414. doi:10.1061/9780784412848.124.
[41] Arya, S. C., O'Neill, M. W., & Pincus, G. (1979). Design of structures and foundations for vibrating machines. Gulf Publishing Company, Houston, United States.
[42] Tripathy, S., & Desai, A. K. (2017). Analysis of seismically induced vibrations in turbo machinery foundation for different soil conditions: Case study. Journal of Vibroengineering, 19(6), 4356–4364. doi:10.21595/jve.2017.17436.
[43] Noman, B. J., & Albusoda, B. S. (2023). Seismic Hazard Assessment in Machine Foundation Design: A Review Study. E3S Web of Conferences, 427. doi:10.1051/e3sconf/202342701029.
[44] Noman, B. J., & Albusoda, B. S. (2024). Effect of Soil-Structure Interaction on the Response of Machine Foundation Subjected to Seismic Loading: A Review Study. Journal of Engineering, 30(04), 152–174. doi:10.31026/j.eng.2024.04.10.
[45] Wood, D. M., Crewe, A., & Taylor, C. (2002). Shaking table testing of geotechnical models. International Journal of Physical Modelling in Geotechnics, 2(1), 01–13. doi:10.1680/ijpmg.2002.020101.
[46] Lee, S. H., Choo, Y. W., & Kim, D. S. (2013). Performance of an equivalent shear beam (ESB) model container for dynamic geotechnical centrifuge tests. Soil Dynamics and Earthquake Engineering, 44, 102–114. doi:10.1016/j.soildyn.2012.09.008.
[47] Alaie, R., & Jamshidi Chenari, R. (2018). Design and Performance of a Single Axis Shake Table and a Laminar Soil Container. Civil Engineering Journal, 4(6), 1326. doi:10.28991/cej-0309176.
[48] Fiorino, L., Bucciero, B., & Landolfo, R. (2019). Evaluation of seismic dynamic behaviour of drywall partitions, façades and ceilings through shake table testing. Engineering Structures, 180, 103-123. doi:10.1016/j.engstruct.2018.11.028.
[49] Fan, G., Zhang, J., Wu, J., & Yan, K. (2016). Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table. Rock Mechanics and Rock Engineering, 49(8), 3243–3256. doi:10.1007/s00603-016-0971-7.
[50] Hussein, A. F., & El Naggar, M. H. (2021). Seismic axial behaviour of pile groups in non-liquefiable and liquefiable soils. Soil Dynamics and Earthquake Engineering, 149, 106853. doi:10.1016/j.soildyn.2021.106853.
[51] Xiao, C., Han, J., & Zhang, Z. (2016). Experimental study on performance of geosynthetic-reinforced soil model walls on rigid foundations subjected to static footing loading. Geotextiles and Geomembranes, 44(1), 81-94. doi:10.1016/j.geotexmem.2015.06.001.
[52] Garala, T. K., & Madabhushi, G. S. P. (2021). Role of Pile Spacing on Dynamic Behavior of Pile Groups in Layered Soils. Journal of Geotechnical and Geoenvironmental Engineering, 147(3), 4021005. doi:10.1061/(asce)gt.1943-5606.0002483.
[53] Robinsky, E. I., & Morrison, C. F. (1964). Sand Displacement and Compaction around Model Friction Piles. Canadian Geotechnical Journal, 1(2), 81–93. doi:10.1139/t64-002.
[54] Cooke, R. W., & Price, G. (1973). Strains and displacements around friction pile. In: Proc. 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, 2, No.1, 53-60.
[55] Puech, A. (1975). On the influence of compressibility on the limit bearing force of deep foundations. PhD Thesis, Université Grenoble Alpes, Saint-Martin-d'Hères, France. (In French).
[56] Randolph, M. F., & Wroth, C. P. (1978). Analysis of Deformation of Vertically Loaded Piles. Journal of the Geotechnical Engineering Division, 104(12), 1465–1488. doi:10.1061/ajgeb6.0000729.
[57] Dong, J., Chen, F., Zhou, M., & Zhou, X. (2018). Numerical analysis of the boundary effect in model tests for single pile under lateral load. Bulletin of Engineering Geology and the Environment, 77(3), 1057–1068. doi:10.1007/s10064-017-1182-5.
[58] Alves, M., & Oshiro, R. E. (2006). Scaling impacted structures when the prototype and the model are made of different materials. International Journal of Solids and Structures, 43(9), 2744–2760. doi:10.1016/j.ijsolstr.2005.03.003.
[59] Das, B. M., & Sivakugan, N. (2018). Principles of foundation engineering. Cengage Learning, Boston, United States.
[60] ACI 351.3R. (2018). Report on foundations for Dynamic Equipment. American Concrete Institute (ACI), Michigan, United States.
[61] Meymand, P. J. (1998). Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay. Ph.D. Thesis, University of California, Berkeley, Berkeley, United States.
[62] Wood, D. M. (2017). Geotechnical modelling. CRC press, Boca Raton, United States.
[63] Das, B. M., & Luo, Z. (2016). Principles of soil dynamics. Cengage Learning, Boston, United States.
[64] Thomson, W. T. (2018). Theory of Vibration with Applications. CRC Press, Boca Raton, United States. doi:10.1201/9780203718841.
[65] Barkan, D. D., Drashevska, L., & Tschebotarioff, G. P. (1962). Dynamics of Bases and Foundations. McGraw-Hill Book Company, New York, United States.
[66] Richart, F. E., Hall, J. R., & Woods, R. D. (1970). Vibrations of soils and foundations. Prentice Hall, Hoboken, United States.
[67] Bommer, J. J., & Acevedo, A. B. (2004). The use of real earthquake accelerograms as input to dynamic analysis. Journal of Earthquake Engineering, 8(Sup001), 43–91. doi:10.1080/13632460409350521.
[68] Krinitzsky, E. L., & Chang, F. K. (1977). State-of-the-art for assessing earthquake hazards in the United States: Report 7, Specifying peak motions for design earthquakes. Waterways Experiment Station, Vicksburg, United States.
[69] Meteoseism (2024). Iraqi Meteorological Organization and Seismology, Ministry of Transportation, Baghdad, Iraq. Available online: http://meteoseism.gov.iq/ (accessed on September 2024). (In Arabic).
[70] Al-Taie, A. J., & Albusoda, B. S. (2019). Earthquake hazard on Iraqi soil: Halabjah earthquake as a case study. Geodesy and Geodynamics, 10(3), 196–204. doi:10.1016/j.geog.2019.03.004.
[71] CESMD (2024). El Centro 1940 Earthquake Strong Motion Data. Center for Engineering Strong-Motion Data (CESMD), Sacramento and Menlo Park, California, United States. Available online: https://strongmotioncenter.org/ (accessed on September 2024).
[72] USGS. (2024). Pazarcik earthquake, Kahramanmaras earthquake sequence. United States Geological Survey (USGS), Reston, United States. Available online: https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/executive (accessed on September 2024).
[73] CESMD (2024). Kobe 1995 Earthquake Strong Motion Data. Center for Engineering Strong-Motion Data (CESMD), Sacramento and Menlo Park, California, United States. Available online: https://strongmotioncenter.org/ (accessed on September 2024).
[74] Boudghene Stambouli, A., Zendagui, D., Bard, P. Y., & Derras, B. (2017). Deriving amplification factors from simple site parameters using generalized regression neural networks: Implications for relevant site proxies. Earth, Planets and Space, 69(1), 1–26. doi:10.1186/s40623-017-0686-3.
[75] Meng, S. Bo, Zhao, J. Wei, Liu, Z. Xian, & Jin, W. (2022). Prediction and Modeling for Local Site Amplification Effect of Ground Motion: Exploring Optimized Machine Learning Approaches. Pure and Applied Geophysics, 179(5), 1805–1827. doi:10.1007/s00024-022-02997-y.
[76] Zahoor, F., Satyam, N., & Rao, K. S. (2023). A Comprehensive Review of the Nonlinear Response of Soil Deposits and its Implications in Ground Response Analysis. Indian Geotechnical Journal, 54(3), 781–799. doi:10.1007/s40098-023-00798-1.
[77] Hardin, B. O., & Drnevich, V. P. (1972). Shear Modulus and Damping in Soils: Measurement and Parameter Effects (Terzaghi Leture). Journal of the Soil Mechanics and Foundations Division, 98(6), 603–624. doi:10.1061/jsfeaq.0001756.
[78] Seed, H. B. (1970). Soil moduli and damping factors for dynamic response analyses. Report, EERC-70, National Technical Information Service, Springfield, United States
[79] Kaynia, A. M. (1982). Dynamic stiffness and seismic response of pile groups. Ph.D. Thesis, Massachusetts Institute of technology, Cambridge, United States.
[80] Manna, B., & Baidya, D. K. (2010). Dynamic nonlinear response of pile foundations under vertical vibration-Theory versus experiment. Soil Dynamics and Earthquake Engineering, 30(6), 456–469. doi:10.1016/j.soildyn.2010.01.002.
[81] Rao, S. S. (2019). Mechanical vibrations, 1995. Addsion-Wesley, Boston, United States.
[82] Friswell, M. I. (2010). Dynamics of rotating machines. Cambridge university press, Cambridge, United Kingdom.
[83] Thomson, W. (2018). Theory of vibration with applications. CRC Press, Boca Raton, United States.
[84] Crouse, C. B., & Jennings, P. C. (1975). Soil-structure interaction during the San Fernando earthquake. Bulletin of the Seismological Society of America, 65(1), 13–36. doi:10.1785/bssa0650010013.
[85] Wolf, J. P. (1994). Foundation vibration analysis using simple physical models. Pearson Education, London, United Kingdom.
[86] Gazetas, G. (1984). Seismic response of end-bearing single piles. International Journal of Soil Dynamics and Earthquake Engineering, 3(2), 82–93. doi:10.1016/0261-7277(84)90003-2.
[87] Crouse, C. B., & McGuire, J. (2001). Energy dissipation in soil-structure interaction. Earthquake Spectra, 17(2), 235–259. doi:10.1193/1.1586174.
[88] Sugiyama, T., Maeda, K., & Kaneko, M. (1990). Traveling wave effects on a tall and narrow building: Observation and analysis. Computers and Geotechnics, 9(4), 307–324. doi:10.1016/0266-352X(90)90044-V.
[89] Yamahara, H. (1970). Ground motions during earthquakes and the input loss of earthquake power to an excitation of buildings. Soils and Foundations, 10(2), 145–161. doi:10.3208/sandf1960.10.2_145.
[90] Han, Y. C., & W. Sabin, G. C. (1995). Impedances for Radially Inhomogeneous Viscoelastic Soil Media. Journal of Engineering Mechanics, 121(9), 939–947. doi:10.1061/(asce)0733-9399(1995)121:9(939).
[91] Sugiyama, T., Ishii, T., & Kaneko, M. (1995). Effects of seismic wave propagation on a long and narrow building: Body wave and surface wave propagation. Computers and Geotechnics, 17(4), 547–564. doi:10.1016/0266-352X(95)94919-H.
[92] Day, R. W. (2002). Geotechnical Earthquake Engineering. The Civil Engineering Handbook, CRC Press, Boca Raton, United States.
[93] Chopra, A. K. (2007). Dynamics of structures. Pearson Education India, Delhi, India.
[94] Prasad, B. B. (2009). Fundamentals of soil dynamics and earthquake engineering. PHI Learning Private Limited, New Delhi, India.
[95] Sarrazin, M. A., Roesset, J. M., & Whitman, R. V. (1972). Dynamic Soil-Structure Interaction. Journal of the Structural Division, 98(7), 1525–1544. doi:10.1061/jsdeag.0003278.
[96] Yeh, C. H., & Wen, Y. K. (1990). Modeling of nonstationary ground motion and analysis of inelastic structural response. Structural Safety, 8(1–4), 281–298. doi:10.1016/0167-4730(90)90046-R.
[97] Cao, H., Yang, H., Friswell, M. I., & Bai, S. (2004). The Analysis of Earthquake Waves Based on Nonlinear Responses of RC Structures. ESDA2004-58253, 69–74. doi:10.1115/esda2004-58253.
[98] Qu, G., Liu, X., & Yu, R. (2017). Practical Simulation Method of Non-Stationary Earthquake Ground Motion Based on Frequency-Dependent Amplitude Envelope Function. International Collaboration in Lifeline Earthquake Engineering 2016, 23, 405–411. doi:10.1061/9780784480342.055.
[99] Veletsos, A. S., & Meek, J. W. (1974). Dynamic behaviour of building"foundation systems. Earthquake Engineering & Structural Dynamics, 3(2), 121–138. doi:10.1002/eqe.4290030203.
[100] Mylonakis, G., & Gazetas, G. (2000). Seismic soil-structure interaction: Beneficial or detrimental? Journal of Earthquake Engineering, 4(3), 277–301. doi:10.1080/13632460009350372.
[101] Beresnev, I. A., & Wen, K.-L. (1996). Nonlinear soil response”A reality? Bulletin of the Seismological Society of America, 86(6), 1964–1978. doi:10.1785/bssa0860061964.
[102] Kramer, S. L. (1996). Geotechnical earthquake engineering. Prentice Hall, Hoboken, United States.
[103] Inman, D. J. (1989). Vibration: with control, measurement, and stability. Prentice Hall, Hoboken, United States.
[104] Ehrich, F.F. (1992) Handbook of Rotordynamics. McGraw-Hill, New York, United States.
[105] Gutierrez-Wing, E. S. (2003). Modal analysis of rotating machinery structures, Ph.D. Thesis, University of London, London, United Kingdom.
[106] Zheng, X., Jin, Y., Cai, R., Rabczuk, T., Zhu, H., & Zhuang, X. (2024). Elastic surface wave attenuation in layered soil by metastructures. Low-Carbon Materials and Green Construction, 2(1), 5. doi:10.1007/s44242-024-00037-7.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.