Experimental and Numerical Study of Enlarged-Head Monopile Under Lateral Load in Soft Clay
Vol. 11 No. 2 (2025): February
Research Articles
Downloads
Doi: 10.28991/CEJ-2025-011-02-04
Full Text: PDF
Elsiragy, M., Azzam, W., & Kassem, E. M. (2025). Experimental and Numerical Study of Enlarged-Head Monopile Under Lateral Load in Soft Clay. Civil Engineering Journal, 11(2), 453–471. https://doi.org/10.28991/CEJ-2025-011-02-04
[1] Ren, L. W., Yang, Q. W., Kong, G. Q., Dun, Z. L., & Wang, X. Y. (2021). Model Tests on Y-Shaped Piles under Compressive and Lateral Loading in Saturated Sand. Geofluids, 2021, 1–14. doi:10.1155/2021/6978602.
[2] Qin, H., Hung, C. Y., Wang, H., & Zhang, J. (2024). Response of laterally loaded finned piles in sand. Acta Geotechnica, 19(4), 1765–1786. doi:10.1007/s11440-023-01992-4.
[3] Yang, Z., Chen, K., Fu, X., & Zou, Z. (2024). Effects of cement-enhanced soil on the ultimate lateral resistance of composite pile in clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 16(1), 183–191. doi:10.1016/j.jrmge.2023.03.010.
[4] Islam, M. R., Turja, S. Das, Van Nguyen, D., & Kim, D. (2024). Lateral response and failure mechanism of single and group piles in cement-improved soil. Results in Engineering, 23, 102668. doi:10.1016/j.rineng.2024.102668.
[5] Hariswaran, S., Amaravathy, U., Puviarasu, S., & Jayasurya, J. (2024). Enhancement of lateral load carrying capacity of a pile incorporating fins – a parametric study. MATEC Web of Conferences, 400, 02004. doi:10.1051/matecconf/202440002004.
[6] Jegadeesh Kumar, T., Rathod, D., & Sahoo, S. K. (2024). Behaviour of a laterally loaded rigid helical pile located on a sloping ground surface. Marine Georesources and Geotechnology, 1–20. doi:10.1080/1064119X.2024.2337847.
[7] Sallam, A., Nasr, A., & Azzam, W. (2024). Effects of Simultaneous Torsional and Lateral Loads on Shaft Piles with Fins in Sandy Soil. Geotechnical and Geological Engineering, 42(5), 3777–3803. doi:10.1007/s10706-024-02757-w.
[8] Kumar Y. M, A., Shetty, K. K., & Krishnamoorthy, A. (2024). Efficiency of RCC piles with helical grooves subjected to axial and lateral loads in cohesionless soil. Cogent Engineering, 11(1), 2326769. doi:10.1080/23311916.2024.2326769.
[9] Meyerhof, G. G. (1959). Compaction of Sands and Bearing Capacity of Piles. Journal of the Soil Mechanics and Foundations Division, 85(6), 1–29. doi:10.1061/jsfeaq.0000231.
[10] Robinsky, E. I., & Morrison, C. F. (1964). Sand Displacement and Compaction around Model Friction Piles. Canadian Geotechnical Journal, 1(2), 81–93. doi:10.1139/t64-002.
[11] Turner, J. P., & Kulhawy, F. H. (1987). Experimental analysis of drilled shaft foundations subjected to repeated axial loads under drained conditions (No. EPRI-EL-5325). Geotechnical Engineering Group; Electric Power Research Inst., Palo Alto, United States.
[12] Al-Mhaidib, A. I. (2005). Shearing rate effect on interfacial friction between sand and steel. In ISOPE International Ocean and Polar Engineering Conference, 19-24 June 2005, Seoul, Korea.
[13] Fatahi, B., Basack, S., Ryan, P., Zhou, W. H., & Khabbaz, H. (2014). Performance of laterally loaded piles considering soil and interface parameters. Geomechanics and Engineering, 7(5), 495–524. doi:10.12989/gae.2014.7.5.495.
[14] Ali, K., J. T, S., & K. G, S. (2013). An Experimental Study of Comparative Performance of Geosynthetic Reinforced Stone Columns in Soft Soils. Proceedings of Indian Geotechnical Conference, H-059:375-378, 733–738. doi:10.3850/978-981-07-3559-3_02-0215.
[15] Sakr, M. A., Nazir, A. K., Azzam, W. R., & Ali, N. O. (2024). Soft clay improvement using eggshell powder as a sustainable material. International Journal of Geotechnical Engineering, 18(4), 377–391. doi:10.1080/19386362.2023.2295684.
[16] Abdelrahman, G. E., & El Kamash, W. H. (2014). Behavior Improvement of Raft Foundation on Port-Said Soft Clay Utilizing Geofoam. Ground Improvement and Geosynthetics, 557–566. doi:10.1061/9780784413401.055.
[17] Azzam, W. R., & Elwakil, A. Z. (2017). Model Study on the Performance of Single-Finned Pile in Sand under Tension Loads. International Journal of Geomechanics, 17(3), 1943–5622 0000761. doi:10.1061/(asce)gm.1943-5622.0000761.
[18] Albusoda, B. S., & Alsaddi, A. F. (2017). Experimental study on performance of laterally loaded plumb and battered piles in layered sand. Journal of Engineering, 23(9), 23–37. doi:10.31026/j.eng.2017.09.02.
[19] Albusoda, B. S., & Alsaddi, A. F. (2017). Experimental study on performance of laterally loaded plumb and finned piles in layered sand. Applied Research Journal, 3(1), 32-39.
[20] Rao, S. N., & Prasad, Y. V. S. N. (1993). Estimation of uplift capacity of helical anchors in clays. Journal of Geotechnical Engineering, 119(2), 352–357. doi:10.1061/(ASCE)0733-9410(1993)119:2(352).
[21] Basack, S. (2010). Response of vertical pile group subjected to horizontal cyclic load in soft clay. Latin American Journal of Solids and Structures, 7(2), 91–103. doi:10.1590/S1679-78252010000200001.
[22] Chandrasekaran, S. S., Boominathan, A., & Dodagoudar, G. R. (2010). Group Interaction Effects on Laterally Loaded Piles in Clay. Journal of Geotechnical and Geoenvironmental Engineering, 136(4), 573–582. doi:10.1061/(asce)gt.1943-5606.0000245.
[23] Boominathan, A., & Ayothiraman, R. (2005). Dynamic behaviour of laterally loaded model piles in clay. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 158(4), 207–215. doi:10.1680/geng.2005.158.4.207.
[24] Winkler, E. (1867). The theory of elasticity and strength: Czechoslov: Dominicus, 36, 77–93.
[25] Wei, J. Q. (1998). Experimental investigation of tapered piles. Master Thesis, The University of Western Ontario, London, Canada.
[26] Peng, J. R., Rouainia, M., & Clarke, B. G. (2010). Finite element analysis of laterally loaded fin piles. Computers and Structures, 88(21–22), 1239–1247. doi:10.1016/j.compstruc.2010.07.002.
[27] Hirany, A., & Kulhawy, F. H. (1989). Interpretation of Load Tests and Drilled Shafts”Part 3: Lateral and Moment. Foundation Engineering: Current Principles and Practicesm, The American Society of Civil Engineers (ASCE), Reston, United States.
[28] Azzam, W. R., & Basha, A. (2017). Utilization of soil nailing technique to increase shear strength of cohesive soil and reduce settlement. Journal of Rock Mechanics and Geotechnical Engineering, 9(6), 1104–1111. doi:10.1016/j.jrmge.2017.05.009.
[29] Vermeer, P. A. and Brinkgreve, R.B.J. (1994). A new effective non-local strain measure for softening plasticity. In Localisation and Bifurcation Theory for Soils and Rocks Edited by: Chambon, R., Desrues, J. and Vardoulakis, I. 89 – 100.
[30] Zidan, A. F., & Ramadan, O. M. O. (2015). Three-dimensional numerical analysis of the effects of tunnelling near piled structures. KSCE Journal of Civil Engineering, 19(4), 917–928. doi:10.1007/s12205-014-0741-6.
[31] Hazzar, L., Hussien, M. N., & Karray, M. (2017). On the behaviour of pile groups under combined lateral and vertical loading. Ocean Engineering, 131, 174–185. doi:10.1016/j.oceaneng.2017.01.006.
[32] Zhou, J. jin, Yu, J. lin, Gong, X. nan, El Naggar, M. H., & Zhang, R. hong. (2021). Field study on the behavior of pre-bored grouted planted pile with enlarged grout base. Acta Geotechnica, 16(10), 3327–3338. doi:10.1007/s11440-021-01208-7.
[2] Qin, H., Hung, C. Y., Wang, H., & Zhang, J. (2024). Response of laterally loaded finned piles in sand. Acta Geotechnica, 19(4), 1765–1786. doi:10.1007/s11440-023-01992-4.
[3] Yang, Z., Chen, K., Fu, X., & Zou, Z. (2024). Effects of cement-enhanced soil on the ultimate lateral resistance of composite pile in clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 16(1), 183–191. doi:10.1016/j.jrmge.2023.03.010.
[4] Islam, M. R., Turja, S. Das, Van Nguyen, D., & Kim, D. (2024). Lateral response and failure mechanism of single and group piles in cement-improved soil. Results in Engineering, 23, 102668. doi:10.1016/j.rineng.2024.102668.
[5] Hariswaran, S., Amaravathy, U., Puviarasu, S., & Jayasurya, J. (2024). Enhancement of lateral load carrying capacity of a pile incorporating fins – a parametric study. MATEC Web of Conferences, 400, 02004. doi:10.1051/matecconf/202440002004.
[6] Jegadeesh Kumar, T., Rathod, D., & Sahoo, S. K. (2024). Behaviour of a laterally loaded rigid helical pile located on a sloping ground surface. Marine Georesources and Geotechnology, 1–20. doi:10.1080/1064119X.2024.2337847.
[7] Sallam, A., Nasr, A., & Azzam, W. (2024). Effects of Simultaneous Torsional and Lateral Loads on Shaft Piles with Fins in Sandy Soil. Geotechnical and Geological Engineering, 42(5), 3777–3803. doi:10.1007/s10706-024-02757-w.
[8] Kumar Y. M, A., Shetty, K. K., & Krishnamoorthy, A. (2024). Efficiency of RCC piles with helical grooves subjected to axial and lateral loads in cohesionless soil. Cogent Engineering, 11(1), 2326769. doi:10.1080/23311916.2024.2326769.
[9] Meyerhof, G. G. (1959). Compaction of Sands and Bearing Capacity of Piles. Journal of the Soil Mechanics and Foundations Division, 85(6), 1–29. doi:10.1061/jsfeaq.0000231.
[10] Robinsky, E. I., & Morrison, C. F. (1964). Sand Displacement and Compaction around Model Friction Piles. Canadian Geotechnical Journal, 1(2), 81–93. doi:10.1139/t64-002.
[11] Turner, J. P., & Kulhawy, F. H. (1987). Experimental analysis of drilled shaft foundations subjected to repeated axial loads under drained conditions (No. EPRI-EL-5325). Geotechnical Engineering Group; Electric Power Research Inst., Palo Alto, United States.
[12] Al-Mhaidib, A. I. (2005). Shearing rate effect on interfacial friction between sand and steel. In ISOPE International Ocean and Polar Engineering Conference, 19-24 June 2005, Seoul, Korea.
[13] Fatahi, B., Basack, S., Ryan, P., Zhou, W. H., & Khabbaz, H. (2014). Performance of laterally loaded piles considering soil and interface parameters. Geomechanics and Engineering, 7(5), 495–524. doi:10.12989/gae.2014.7.5.495.
[14] Ali, K., J. T, S., & K. G, S. (2013). An Experimental Study of Comparative Performance of Geosynthetic Reinforced Stone Columns in Soft Soils. Proceedings of Indian Geotechnical Conference, H-059:375-378, 733–738. doi:10.3850/978-981-07-3559-3_02-0215.
[15] Sakr, M. A., Nazir, A. K., Azzam, W. R., & Ali, N. O. (2024). Soft clay improvement using eggshell powder as a sustainable material. International Journal of Geotechnical Engineering, 18(4), 377–391. doi:10.1080/19386362.2023.2295684.
[16] Abdelrahman, G. E., & El Kamash, W. H. (2014). Behavior Improvement of Raft Foundation on Port-Said Soft Clay Utilizing Geofoam. Ground Improvement and Geosynthetics, 557–566. doi:10.1061/9780784413401.055.
[17] Azzam, W. R., & Elwakil, A. Z. (2017). Model Study on the Performance of Single-Finned Pile in Sand under Tension Loads. International Journal of Geomechanics, 17(3), 1943–5622 0000761. doi:10.1061/(asce)gm.1943-5622.0000761.
[18] Albusoda, B. S., & Alsaddi, A. F. (2017). Experimental study on performance of laterally loaded plumb and battered piles in layered sand. Journal of Engineering, 23(9), 23–37. doi:10.31026/j.eng.2017.09.02.
[19] Albusoda, B. S., & Alsaddi, A. F. (2017). Experimental study on performance of laterally loaded plumb and finned piles in layered sand. Applied Research Journal, 3(1), 32-39.
[20] Rao, S. N., & Prasad, Y. V. S. N. (1993). Estimation of uplift capacity of helical anchors in clays. Journal of Geotechnical Engineering, 119(2), 352–357. doi:10.1061/(ASCE)0733-9410(1993)119:2(352).
[21] Basack, S. (2010). Response of vertical pile group subjected to horizontal cyclic load in soft clay. Latin American Journal of Solids and Structures, 7(2), 91–103. doi:10.1590/S1679-78252010000200001.
[22] Chandrasekaran, S. S., Boominathan, A., & Dodagoudar, G. R. (2010). Group Interaction Effects on Laterally Loaded Piles in Clay. Journal of Geotechnical and Geoenvironmental Engineering, 136(4), 573–582. doi:10.1061/(asce)gt.1943-5606.0000245.
[23] Boominathan, A., & Ayothiraman, R. (2005). Dynamic behaviour of laterally loaded model piles in clay. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 158(4), 207–215. doi:10.1680/geng.2005.158.4.207.
[24] Winkler, E. (1867). The theory of elasticity and strength: Czechoslov: Dominicus, 36, 77–93.
[25] Wei, J. Q. (1998). Experimental investigation of tapered piles. Master Thesis, The University of Western Ontario, London, Canada.
[26] Peng, J. R., Rouainia, M., & Clarke, B. G. (2010). Finite element analysis of laterally loaded fin piles. Computers and Structures, 88(21–22), 1239–1247. doi:10.1016/j.compstruc.2010.07.002.
[27] Hirany, A., & Kulhawy, F. H. (1989). Interpretation of Load Tests and Drilled Shafts”Part 3: Lateral and Moment. Foundation Engineering: Current Principles and Practicesm, The American Society of Civil Engineers (ASCE), Reston, United States.
[28] Azzam, W. R., & Basha, A. (2017). Utilization of soil nailing technique to increase shear strength of cohesive soil and reduce settlement. Journal of Rock Mechanics and Geotechnical Engineering, 9(6), 1104–1111. doi:10.1016/j.jrmge.2017.05.009.
[29] Vermeer, P. A. and Brinkgreve, R.B.J. (1994). A new effective non-local strain measure for softening plasticity. In Localisation and Bifurcation Theory for Soils and Rocks Edited by: Chambon, R., Desrues, J. and Vardoulakis, I. 89 – 100.
[30] Zidan, A. F., & Ramadan, O. M. O. (2015). Three-dimensional numerical analysis of the effects of tunnelling near piled structures. KSCE Journal of Civil Engineering, 19(4), 917–928. doi:10.1007/s12205-014-0741-6.
[31] Hazzar, L., Hussien, M. N., & Karray, M. (2017). On the behaviour of pile groups under combined lateral and vertical loading. Ocean Engineering, 131, 174–185. doi:10.1016/j.oceaneng.2017.01.006.
[32] Zhou, J. jin, Yu, J. lin, Gong, X. nan, El Naggar, M. H., & Zhang, R. hong. (2021). Field study on the behavior of pre-bored grouted planted pile with enlarged grout base. Acta Geotechnica, 16(10), 3327–3338. doi:10.1007/s11440-021-01208-7.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
