Comprehensive Assessment for Liquefaction Vulnerability in Indonesia: Empirical and Element Simulation Approaches
Downloads
Doi: 10.28991/CEJ-2025-011-01-019
Full Text: PDF
Downloads
[2] Supendi, P., Winder, T., Rawlinson, N., Bacon, C. A., Palgunadi, K. H., Simanjuntak, A., Kurniawan, A., Widiyantoro, S., Nugraha, A. D., Shiddiqi, H. A., Ardianto, Daryono, Adi, S. P., Karnawati, D., Priyobudi, Marliyani, G. I., Imran, I., & Jatnika, J. (2023). A conjugate fault revealed by the destructive Mw 5.6 (November 21, 2022) Cianjur earthquake, West Java, Indonesia. Journal of Asian Earth Sciences, 257, 105830. doi:10.1016/j.jseaes.2023.105830.
[3] Nurlita Fitri, S., Asih Aryani Soemitro, R., Dewa Warnana, D., & Sutra, N. (2018). Application of microtremor HVSR method for preliminary assessment of seismic site effect in Ngipik landfill, Gresik. MATEC Web of Conferences, 195. doi:10.1051/matecconf/201819503017.
[4] Purwana, Y. M., Goro, G. L., Fitri, S. N., Setiawan, B., & Arbianto, R. (2022). Assessment of Seismic Loss in Surakarta School Buildings. Civil Engineering and Architecture, 10(5), 1772–1787. doi:10.13189/cea.2022.100506.
[5] Kusumawardani, R., Chang, M., Upomo, T. C., Huang, R. C., Fansuri, M. H., & Prayitno, G. A. (2021). Understanding of Petobo liquefaction flowslide by 2018.09.28 Palu-Donggala Indonesia earthquake based on site reconnaissance. Landslides, 18(9), 3163–3182. doi:10.1007/s10346-021-01700-x.
[6] Tanjung, M. I., Irsyam, M., Sahadewa, A., Iai, S., Tobita, T., & Nawir, H. (2023). Overview of Flowslide in Petobo during liquefaction of the 2018 Palu Earthquake. Soil Dynamics and Earthquake Engineering, 173. doi:10.1016/j.soildyn.2023.108110.
[7] Geological Department. (2019). ATLAS Liquefaction vulnerability zone in Indonesia. Ministry of Energy and Mineral Resource, Bandung, Indonesia. (In Indonesian).
[8] Cilia, M. G., Mooney, W. D., & Nugroho, C. (2021). Field Insights and Analysis of the 2018 Mw 7.5 Palu, Indonesia Earthquake, Tsunami and Landslides. Pure and Applied Geophysics, 178(12), 4891–4920. doi:10.1007/s00024-021-02852-6.
[9] Kiyota, T., Furuichi, H., Hidayat, R. F., Tada, N., & Nawir, H. (2020). Overview of long-distance flow-slide caused by the 2018 Sulawesi earthquake, Indonesia. Soils and Foundations, 60(3), 722–735. doi:10.1016/j.sandf.2020.03.015.
[10] Nanda, G. I., & Mulyani, A. (2021). Analysis of landscape changes using high-resolution satellite images at former rice fields after earthquake and liquefaction in Central Sulawesi Province. IOP Conference Series: Earth and Environmental Science, 648(1), 012203. doi:10.1088/1755-1315/648/1/012203.
[11] Mase, L. Z. (2017). Experimental liquefaction study of Southern Yogyakarta using shaking table. Journal of Civil Engineering, 23(1), 11-18.
[12] Tsimopoulou, V., Mikami, T., Hossain, T. T., Takagi, H., Esteban, M., & Utama, N. A. (2020). Uncovering unnoticed small-scale tsunamis: field survey in Lombok, Indonesia, following the 2018 earthquakes. Natural Hazards, 103(2), 2045–2070. doi:10.1007/s11069-020-04071-z.
[13] National Academies of Sciences, Engineering, and Medicine. (2021). State of the art and practice in the assessment of earthquake-induced soil liquefaction and its consequences. National Academy of Sciences, Washington, United States. doi:10.17226/23474.
[14] Fitri, S. N., & Sawada, K. (2024). Evaluation and Opportunities for Soil Liquefaction Vulnerability Research: Lesson Learned from Japan for Indonesia - A Bibliometric Analysis. Proceedings of the 2024 11th International Conference on Geological and Civil Engineering, ICGCE 2024, Springer Series in Geomechanics and Geoengineering, Springer, Cham, Switzerland. doi:10.1007/978-3-031-68624-5_2.
[15] SNI 8460-2017. (2017). Geotechnical Design Requirements. Badan Standarisasi Nasional, Jakarta, Indonesia. (In Indonesian).
[16] Seed, H. B., & Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations division, 97(9), 1249-1273. doi:10.1061/JSFEAQ.0001662.
[17] Ye, B., Ye, G., Zhang, F., & Yashima, A. (2007). Experiment and numerical simulation of repeated liquefaction-consolidation of sand. Soils and Foundations, 47(3), 547–558. doi:10.3208/sandf.47.547.
[18] Oka, F., Yashima, A., Tateishi, A., Taguchi, Y., & Yamashita, S. (1999). A cyclic elasto-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus. Geotechnique, 49(5), 661–680. doi:10.1680/geot.1999.49.5.661.
[19] The LIQCA Research and Development Group (2009). User's manual for LIQCA2D09. Representative: Oka, F. of Kyoto University, Kyoto, Japan.
[20] Nishimura, S. (2022). Application of Probabilistic Models to Material Strength, Structural Strength and Disaster Occurrence. Journal of the Society of Materials Science, Japan, 71(2), 197–203. doi:10.2472/jsms.71.197.
[21] Kato, K., Nagao, K., & Suemasa, N. (2019). Numerical simulation of undrained cyclic behavior for desaturated silica sands. Japanese Geotechnical Society Special Publication, 7(2), 505–515. doi:10.3208/jgssp.v07.080.
[22] Kuribayashi, K., Hara, T., Sakabe, A., & Kuroda, S. (2021). A Study on Damages of Road Embankment on the Liquefaction Ground. Journal of Japan Association for Earthquake Engineering, 21(1), 1_46-1_63. doi:10.5610/jaee.21.1_46.
[23] Santucci de Magistris, F., Lanzano, G., Forte, G., & Fabbrocino, G. (2013). A database for PGA threshold in liquefaction occurrence. Soil Dynamics and Earthquake Engineering, 54, 17–19. doi:10.1016/j.soildyn.2013.07.011.
[24] Jalil, A., Fathani, T. F., Satyarno, I., & Wilopo, W. (2021). Liquefaction in Palu: the cause of massive mudflows. Geoenvironmental Disasters, 8(1). doi:10.1186/s40677-021-00194-y.
[25] Aini, I., Wilopo, W., & Fathani, T. F. (2024). Development of Peak Ground Acceleration Using a Non-Linear Approach To Evaluate Liquefaction Potential in Sei Wampu Bridge, Langkat, North Sumatra, Indonesia. ASEAN Engineering Journal, 14(3), 41–52. doi:10.11113/aej.V14.20606.
[26] Zakariya, A., Rifaí, A., & Ismanti, S. (2023). Comparative Analysis of Quantitative Indices for Evaluating the Liquefaction Potential of Medium-Dense Cohesionless Soil. Journal of GeoEngineering, 18(3), 93–102. doi:10.6310/jog.202309_18(3).1.
[27] Idriss, I. M., & Boulanger, R. W. (2008). Soil liquefaction during earthquakes. Earthquake Engineering Research Institute, Oakland, United States.
[28] Youd, T. L., & Idriss, I. M. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297–313. doi:10.1061/(asce)1090-0241(2001)127:4(297).
[29] Zakariya, A., Rifa'I, A., & Ismanti, S. (2023). Ground Motion and Liquefaction Study at Opak River Estuary Bantul. IOP Conference Series: Earth and Environmental Science, 1244(1). doi:10.1088/1755-1315/1244/1/012032.
[30] Irdhiani, Rifa'i, A., Fathani, T. F., & Adi, A. D. (2024). Post-Earthquake Liquefaction Vulnerability Mapping by Swedish Weight Sounding and Standard Penetration Test. Civil Engineering Journal (Iran), 10(7), 2216–2232. doi:10.28991/CEJ-2024-010-07-09.
[31] Kiyota, T., Shiga, M., Katagiri, T., Furuichi, H., & Nawir, H. (2022). Effect of Artesian Pressure on Liquefaction-Induced Flow-Slide: A Case Study of the 2018 Sulawesi Earthquake, Indonesia. Geotechnical, Geological and Earthquake Engineering, 52, 1579–1586. doi:10.1007/978-3-031-11898-2_140.
[32] Mase, L. Z. (2017). Shaking table test of soil liquefaction in southern Yogyakarta. International Journal of Technology, 8(4), 747–760. doi:10.14716/ijtech.v8i4.9488.
[33] Khashila, M., Hussien, M. N., Karray, M., & Chekired, M. (2021). Liquefaction resistance from cyclic simple and triaxial shearing: a comparative study. Acta Geotechnica, 16(6), 1735–1753. doi:10.1007/s11440-020-01104-6.
[34] Rodriguez-Arriaga, E., & Green, R. A. (2018). Assessment of the cyclic strain approach for evaluating liquefaction triggering. Soil Dynamics and Earthquake Engineering, 113, 202–214. doi:10.1016/j.soildyn.2018.05.033.
[35] Önalp, A., Özocak, A., Bol, E., Sert, S., Arslan, E., & Ural, N. (2024). An investigation into dynamic behaviour of reconstituted and undisturbed fine-grained soil during triaxial and simple shear. Bulletin of Earthquake Engineering, 22(11), 5599–5618. doi:10.1007/s10518-024-01980-3.
[36] Oka, F., Oshima, A., & Fukai, H. (2023). Evaluation of liquefaction strength of Japanese natural sandy soil using triaxial and simple shear tests. Soils and Foundations, 63(4). doi:10.1016/j.sandf.2023.101349.
[37] Sternik, K. (2024). Static liquefaction as a form of material instability in element test simulations of granular soil. Archives of Civil Engineering, 70(2), 309–322. doi:10.24425/ace.2024.149865.
[38] Fujiwara, K., Ogawa, N., & Nakai, K. (2021). 3-D Numerical Analysis of Partial Floating Sheet-Pile Method as Countermeasure for Liquefaction. Journal of JSCE, 9(1), 138–147. doi:10.2208/journalofjsce.9.1_138.
[39] Santucci de Magistris, F., Lanzano, G., Forte, G., & Fabbrocino, G. (2014). A peak acceleration threshold for soil liquefaction: lessons learned from the 2012 Emilia earthquake (Italy). Natural Hazards, 74(2), 1069–1094. doi:10.1007/s11069-014-1229-x.
[40] BNBP (2017). Indonesian Seismic Sources and Seismic Hazard Maps: Center for research and development of housing and resettlement. Ministry of Public Works and Human Settlements, National Center for Earthquake Studies, Jakarta, Indonesia.
[41] Orense, R. P. (2005). Assessment of liquefaction potential based on peak ground motion parameters. Soil Dynamics and Earthquake Engineering, 25(3), 225–240. doi:10.1016/j.soildyn.2004.10.013.
[42] Mase, L. Z., Fathani, T. F., & Adi, A. D. (2021). A simple shaking table test to measure liquefaction potential of Prambanan Area, Yogyakarta, Indonesia. ASEAN Engineering Journal, 11(3), 89-108. doi:10.11113/aej.v11.16874.
[43] Möller, J. K., Taborda, D. M. G., Kontoe, S., & Potts, D. M. (2024). A shear history model for capturing the liquefaction resistance of sands at various cyclic stress ratios. Computers and Geotechnics, 166. doi:10.1016/j.compgeo.2023.105940.
[44] Juang, C. H., Ching, J., Luo, Z., & Ku, C. S. (2012). New models for probability of liquefaction using standard penetration tests based on an updated database of case histories. Engineering Geology, 133–134, 85–93. doi:10.1016/j.enggeo.2012.02.015.
[45] Chen, C. J., & Juang, C. H. (2000). Calibration of SPT- and CPT-based liquefaction evaluation methods. Proceedings of Sessions of Geo-Denver 2000 - Innovations and Applications in Geotechnical Site Characterization, GSP 97, 285, 49–64. doi:10.1061/40505(285)4.
[46] Porcino, D., Marcianò, V., & Granata, R. (2011). Undrained cyclic response of a silicate-grouted sand for liquefaction mitigation purposes. Geomechanics and Geoengineering, 6(3), 155–170. doi:10.1080/17486025.2011.560287.
[47] Wu, J., Kammerer, A. M., Riemer, M. F., Seed, R. B., & Pestana, J. M. (2004). Laboratory study of liquefaction triggering criteria. 13th World Conference on Earthquake Engineering, 1-6 August, Vancouver, Canada.
[48] Nong, Z. Z., Park, S. S., & Lee, D. E. (2021). Comparison of sand liquefaction in cyclic triaxial and simple shear tests. Soils and Foundations, 61(4), 1071–1085. doi:10.1016/j.sandf.2021.05.002.
[49] Artati, H., Pawirodikromo, W., Rahardjo, P., & Makrup, L. (2023). Effect of Fines Content on Liquefaction Resistance During Steady-State Conditions. International Journal of GEOMATE, 25(109), 18–28. doi:10.21660/2023.109.3481.
[50] Idriss, I. M., & Boulanger, R. W. (2010). SPT-based liquefaction triggering procedures. Report No. UCD/CGM-10, 2, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, United States.
[51] Mandokhail, S. ullah J., Park, D., & Yoo, J. K. (2017). Development of normalized liquefaction resistance curve for clean sands. Bulletin of Earthquake Engineering, 15(3), 907–929. doi:10.1007/s10518-016-0020-7.
[52] Boulanger, R. W., & Idriss, I. M. (2012). Probabilistic Standard Penetration Test–Based Liquefaction–Triggering Procedure. Journal of Geotechnical and Geoenvironmental Engineering, 138(10), 1185–1195. doi:10.1061/(asce)gt.1943-5606.0000700.
[53] Chen, G., Xu, L., Kong, M., & Li, X. (2015). Calibration of a CRR model based on an expanded SPT-based database for assessing soil liquefaction potential. Engineering Geology, 196, 305–312. doi:10.1016/j.enggeo.2015.08.002.
[54] Tripathi, C. B., Jha, P. K., & Agarwal, R. (2024). Method comparison: Statistical measurement correlation or agreement-most appropriate tool? Asian Journal of Medical Sciences, 15(1), 262–268. doi:10.3126/ajms.v15i1.58213.
[55] Hanindya, K. A., Makrup, L., Widodo, & Paulus, R. (2023). Deterministic Seismic Hazard Analysis to Determine Liquefaction Potential Due to Earthquake. Civil Engineering Journal (Iran), 9(5), 1203–1216. doi:10.28991/CEJ-2023-09-05-012.
[56] Bhutani, M., & Naval, S. (2020). Assessment of seismic site response and liquefaction potential for some sites using borelog data. Civil Engineering Journal (Iran), 6(11), 2103–2119. doi:10.28991/cej-2020-03091605.
[57] Filali, K., & Sbartai, B. (2017). A comparative study between simplified and nonlinear dynamic methods for estimating liquefaction potential. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 955–966. doi:10.1016/j.jrmge.2017.05.008.
[58] Towhata, I., Wu, W., & Borja, R. I. (2008). Geotechnical Earthquake Engineering. Springer Series in Geomechanics and Geoengineering, 1. doi:10.2113/gseegeosci.iii.1.158.
[59] Poddar, P., Ojha, S., & Gupta, M. K. (2023). Probabilistic and deterministic-based approach for liquefaction potential assessment of layered soil. Natural Hazards, 118(2), 993–1012. doi:10.1007/s11069-023-06031-9.
[60] Jalil, A., Fathani, T. F., Satyarno, I., & Wilopo, W. (2020). A study on the liquefaction potential in Banda Aceh city after the 2004 sumatera earthquake. International Journal of GEOMATE, 18(65), 147–155. doi:10.21660/2020.65.94557.
[61] Quigley, M. C., Bastin, S., & Bradley, B. A. (2013). Recurrent liquefaction in Christchurch, New Zealand, during the Canterbury earthquake sequence. Geology, 41(4), 419–422. doi:10.1130/G33944.1.
[62] Monaco, P., de Magistris, F. S., Grasso, S., Marchetti, S., Maugeri, M., & Totani, G. (2011). Analysis of the liquefaction phenomena in the village of Vittorito (L'Aquila). Bulletin of Earthquake Engineering, 9(1), 231–261. doi:10.1007/s10518-010-9228-0.
[63] Hata, Y., Ichii, K., Nozu, A., Maruyama, Y., & Sakai, H. (2013). Ground motion estimation at the farthest liquefaction site during the 2011 off the pacific coast of Tohoku earthquake. Soil Dynamics and Earthquake Engineering, 48, 132–142. doi:10.1016/j.soildyn.2013.01.002.
[64] Franke, K. W., Lingwall, B. N., Youd, T. L., Blonquist, J., & Liang, J. H. (2019). Overestimation of liquefaction hazard in areas of low to moderate seismicity due to improper characterization of probabilistic seismic loading. Soil Dynamics and Earthquake Engineering, 116, 681–691. doi:10.1016/j.soildyn.2018.10.040.
[65] Berkat, B., Akhssas, A., Ouadif, L., & Bahi, A. (2024). Assessment of Liquefaction Potential by Comparing Semi-Empirical Methods Based on the CPT Test. Civil and Environmental Engineering, 20(1), 164-179. doi:10.2478/cee-2024-0014.
[66] Touijrate, S., Baba, K., Ahatri, M., & Bahi, L. (2018). Validation and Verification of Semi-Empirical Methods for Evaluating Liquefaction Using Finite Element Method. MATEC Web of Conferences, 149, 02028. doi:10.1051/matecconf/201814902028.
[67] Idriss, I. M., & Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2-4 SPEC. ISS.), 115–130. doi:10.1016/j.soildyn.2004.11.023.
[68] Berkat, B., Akhssas, A., & Elfilali, O. (2024). Assessing Liquefaction Potential in Alluvial Plains through Spatiotemporal Analysis Using Liquefaction Probability Index. Civil Engineering Journal (Iran), 10(6), 2007–2018. doi:10.28991/CEJ-2024-010-06-018.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.